alexa Vascular Tissue Contractility Changes Following Late Gestational Exposure to Multi-Walled Carbon Nanotubes or their Dispersing Vehicle in Sprague Dawley Rats
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Vascular Tissue Contractility Changes Following Late Gestational Exposure to Multi-Walled Carbon Nanotubes or their Dispersing Vehicle in Sprague Dawley Rats

Vidanapathirana AK1, Thompson LC1, Odom J1, Holland NA1, Sumner SJ2, Fennell TR2, Brown JM3 and Wingard CJ1*

1Department of Physiology, Brody School of Medicine, East Carolina University, NC 27834, USA

2Discovery Sciences, RTI International, Research Triangle Park, NC, 27709, USA

3Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, CO, 80045, USA

*Corresponding Author:
Christopher J Wingard
Department of Physiology
Brody School of Medicine at East Carolina University
600 Moye Boulevard, Brody 6N98, Greenville, NC, 27834, USA
Tel: +1-252-744-2804
Fax: +1-252-744-3460
E-mail: [email protected]

Received Date: March 25, 2014; Accepted Date: April 15, 2014; Published Date: April 20, 2014

Citation: Vidanapathirana AK, Thompson LC, Odom J, Holland NA, Sumner SJ, et al. (2014) Vascular Tissue Contractility Changes Following Late Gestational Exposure to Multi-Walled Carbon Nanotubes or their Dispersing Vehicle in Sprague Dawley Rats. J Nanomed Nanotechnol 5:201. doi:10.4172/2157-7439.1000201

Copyright: © 2014 Vidanapathirana AK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Multi-walled carbon nanotubes (MWCNTs) are increasingly used in industry and in nanomedicine raising safety concerns, especially during unique life-stages such as pregnancy. We hypothesized that MWCNT exposure during pregnancy will increase vascular tissue contractile responses by increasing Rho kinase signaling. Pregnant (17-19 gestational days) and non-pregnant Sprague Dawley rats were exposed to 100 μg/kg of MWCNTs by intratracheal instillation or intravenous administration. Vasoactive responses of uterine, mesenteric, aortic and umbilical vessels were studied 24 hours post-exposure by wire myography. The contractile responses of the vessel segments were different between the pregnant and non-pregnant rats, following MWCNT exposure. Maximum stress generation in the uterine artery segments from the pregnant rats following pulmonary MWCNT exposure was increased in response to angiotensin II by 4.9 mN/mm2 (+118%), as compared to the naïve response and by 2.6 mN/mm2 (+40.7%) as compared to the vehicle exposed group. Following MWCNT exposure, serotonin induced approximately 4 mN/mm2 increase in stress generation of the mesenteric artery from both pregnant and non-pregnant rats as compared to the vehicle response. A significant contribution of the dispersion medium was identified as inducing changes in the contractile properties following both pulmonary and intravenous exposure to MWCNTs. Wire myographic studies in the presence of a Rho kinase inhibitor and RhoA and Rho kinase mRNA/protein expression of rat aortic endothelial cells were unaltered following exposure to MWCNTs, suggesting absent/minimal contribution of Rho kinase to the enhanced contractile responses following MWCNT exposure. The reactivity of the umbilical vein was not changed; however, mean fetal weight gain was reduced with dispersion media and MWCNT exposure by both routes. These results suggest a susceptibility of the vasculature during gestation to MWCNT and their dispersion media-induced vasoconstriction, predisposing reduced fetal growth during pregnancy.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version