alexa VDR Potentiation and NMDA R Inhibition Facilitates Axo-Dendritic Process Formation in Melanocyte Model for Pigmented Cells in Parkinsonism
ISSN: 2168-9296

Cell & Developmental Biology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

VDR Potentiation and NMDA R Inhibition Facilitates Axo-Dendritic Process Formation in Melanocyte Model for Pigmented Cells in Parkinsonism

Ogundele Olalekan Michael1*, Ajonijebu2, Duyilemi Chris3, Okunnuga Adedotun Adetokunbo4, Adekeye Adeshina Oloruntoba1 and Ojo Abiodun Ayodele4
1Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Nigeria
2Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Nigeria
3Department of Morbid Anatomy and Histopathology, Federal Medical Centre, Nigeria
4Department of Chemical Sciences, College of Sciences, Afe Babalola University, Nigeria
*Corresponding Author : Ogundele Olalekan Michael
Department of Anatomy
College of Medicine and Health Sciences
Afe Babalola University, Nigeria
Tel: +234(0)7031022702
E-mail: [email protected]
Received September 01, 2013; Accepted October 24, 2013; Published October 26, 2013
Citation: Michael OO, Ajonijebu, Chris D, Adetokunbo OA, Oloruntoba AA, et al. (2013) VDR Potentiation and NMDA R Inhibition Facilitates Axo-Dendritic Process Formation in Melanocyte Model for Pigmented Cells in Parkinsonism. Cell Dev Biol 2:127. doi:10.4172/2168-9296.1000127
Copyright: © 2013 Michael OO, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

Background: A major cellular change in dopaminergic neurons leading to Parkinsonism is the alteration of microtubule proteins that causes accumulation of tau protein, α-syn and β-amyloid plaque in the cells. In this study we investigate the role of Vitamin D3 in relieving the symptoms of Parkinsonism as it is capable of stimulating polymerization of microtubules. The Microtubules (MT) system in the fish scale melanocytes has been modeled for the dopaminergic neurons of the Substantia Nigra (SN). These cells are capable of forming cellular processes similar to what is seen in the dopaminergic neurons; in this study, we investigate the protective effect of Vitamin D3 Receptor Agonist (VDRA) and N-Methyl-D-Aspartate Receptor (NMDA R) inhibition in process formation, synaptic denervation and melanin loss in fish scale melanocytes modeled as pigmented adrenergic cells.

Method: The Tilapia scale was isolated and sub cultured in Ringer’s solution following which the cells were prepared for imaging. We incubated the cells with VDRA, Ketamine and a combination of Ketamine and VDRA in separate set ups for 60 minutes. Using brightfield imaging techniques, the cells were viewed during the incubation period and recorded using a Cameroscope connected to a computer interface.

Results/Conclusion: The cells incubated with VDRA and NMDA R inhibitor, showed an increase in the number of process and extent of the process formation; the increased number of process is an indication of a rapid rate of polymerization of microtubules. Also, the processes formed are combined long processes peculiar to the NMDA R1 inhibition and short processes characteristic of VDR potentiation as seen in VDRA treatment only. Most of the effects of the VDRA were restricted to process formation around the cell body; this is similar to the microtubule cytoskeletal system found in the dendritic nucleation assembly. This finding confirms the presence of VDR and its likely restriction to d cell body plus its role in facilitating short dendrite-like process formation while NMDA R is located on the processes and facilitates long process formation.

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords