alexa VEGF165 Gene Therapy Improves Left Ventricular Function and Exercise Capacity in Diabetic Rats after Myocardial Infarction: Impact on Mortality Rate | OMICS International | Abstract
ISSN: 2155-6156

Journal of Diabetes & Metabolism
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

VEGF165 Gene Therapy Improves Left Ventricular Function and Exercise Capacity in Diabetic Rats after Myocardial Infarction: Impact on Mortality Rate

Bruno Rodrigues1,2, Cristiano T. Mostarda2, Kaleizu T. Rosa2, Melissa Markoski3, Nance B. Nardi3, Kátia De Angelis4, Maria Cláudia Irigoyen2 and Renato A. K. Kalil3

1Human Movement Laboratory, São Judas Tadeu University, São Paulo, Brazil

2Hypertension Unit, Heart Institute (InCor), Medical School of University of São Paulo, São Paulo, Brazil

3Universitary Foundation of Cardiology of Rio Grande do Sul (IC/FUC), Porto Alegre, Brazil

4Nove de Julho University, São Paulo, Brazil

*Corresponding Author:
Bruno Rodrigues, PhD
Hypertension Unit, Heart Institute (InCor)
Av. Dr. Eneas de Carvalho Aguiar
44 – Subsolo, São Paulo
São Paulo, Brazil-05403-000
Tel: +55 11 3069 5006
Fax: +55 11 3085 7887
E-mail: [email protected]

Received date November 24, 2011; Accepted date December 18, 2011; Published date December 22, 2011

Citation: Rodrigues B, Mostarda CT, Rosa KT, Markoski M, Nardi NB, et al. (2011) EGF165 Gene Therapy Improves Left Ventricular Function and Exercise Capacity in Diabetic Rats after Myocardial Infarction: Impact on Mortality Rate. J Diabetes Metab S4:006. doi: 10.4172/2155-6156.S4-006

Copyright: © 2011 Rodrigues B, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Despite the increased amount of evidence about the benefits of human vascular endothelial growth factors by plasmid (pHuVEGF 165 ) based gene transfer after an ischemic event, the effects of pHuVEGF 165 therapy in diabetic hearts after myocardial infarction (MI) remains poorly investigated. We evaluated the effects of intramyocardial pHuVEGF 165 injection on left ventricular (LV) morphometry, function and blood flow, maximal oxygen consumption (VO 2 max), and the total mortality rate of diabetic rats after MI. Male Wistar rats were divided into control (C), myocardial infarction+saline injection (I+SAL), myocardial infarction+pHuVEGF 165 injection (I+VEGF), diabetes+myocardial infarction+saline injection (DI+SAL), and diabetes+myocardial infarction+pHuVEGF 165 injection (DI+VEGF). MI was induced after 15 days of streptozotocin diabetes induction. One day after MI, the animals received pHuVEGF 165 or saline intramyocardial injection. LV function and maximal oxygen consumption (VO 2 max) were evaluated at the initial injection and 30 days after injections. MI area evaluation showed an additional reduction in DI+VEGF (8±1%) in comparison with group I+VEGF (31±3%). Improvement in systolic function, evaluated invasively and noninvasively, lung wet/dry weight ratio, and VO 2 max were observed in both pHuVEGF 165 injected groups. Consequently, mortality rate was reduced in I+VEGF (19%) and DI+VEGF (12.5%) when compared with I+SAL (48%) and DI+SAL (37.5%) groups. In conclusion, pHuVEGF 165 therapy resulted in reduced MI area, stabilization and maintenance of left ventricular function, increased VO 2 max, and reduced mortality in MI animals, diabetic or not. These results highlight the importance of continuing experimental studies and controlled clinical trials of gene therapy for ischemic cardiomiopathy associated with the pathological conditions of diabetes.

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7