alexa Vitamin Para-Aminobenzoic Acid (PABA) Controls Generation of Nitric Oxide (NO) In Vitro and its Biological Functions in the Bacterial Cells | OMICS International | Abstract
ISSN: 2379-1764

Advanced Techniques in Biology & Medicine
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Vitamin Para-Aminobenzoic Acid (PABA) Controls Generation of Nitric Oxide (NO) In Vitro and its Biological Functions in the Bacterial Cells

Svetlana V Vasilieva1*, Maria S Petrishcheva1, Elizaveta I Gusarova1 and Andreyan N Osipov2,3

1N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia

2N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119991, Russia

3A.N. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological, Moscow, 23 Marshal Novikov Street, 123098, Russia

*Corresponding Author:
Svetlana V Vasilieva
N.M. Emanuel Institute of Biochemical Physics
Russian Academy of Sciences
4 Kosygin Street, Moscow, 119334, Russia
Tel: 74959397293
Fax: 74991374101
E-mail: [email protected]

Received Date: November 23, 2016; Accepted Date: November 28, 2016; Published Date: November 30, 2016

Citation: Vasilieva SV, Petrishcheva MS, Gusarova EI, Osipov AN (2016) Vitamin Para-Aminobenzoic Acid (PABA) Controls Generation of Nitric Oxide (NO) In Vitro and Its Biological Functions in the Bacterial Cells. Adv Tech Biol Med 4: 195. doi: 10.4172/2379-1764.1000195

Copyright: © 2016 Vasilieva SV, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Nitric oxide (NO) serves either a universal signaling molecule or extremely toxic agent, depending on the dose. Up to date there have been a very limited number of natural compounds serving as effective regulators of NO signaling and toxic potencies. NO acts in concert with H2S to coordinate cell responses; however, how exactly this interaction is achieved is not known. Both agents have an effect on the accumulation of both reactive chemical species, ROS and RNS and can give rise to other reactive species. Para-aminobenzoic acid (PABA) is an essential metabolite for certain organisms. Once considered a vitamin, PABA, functions as an effective inhibitor of inducible SOS DNA repair processes in E. coli. In the present study we focus on the genetic and physiological evidence in favor of interference of NO-donors and PABA in bacterial cells with DNA repair gene expression and biofilm formation, depending on the rate of NOdonating in vitro and intracellular ROS/RNS accumulation in the cells. The crystalline dinitrosyl iron complexes (NO- 29 and NO-33) with thiourea as the ligands and 3 crystalline tetranitrosyl iron complexes with thiosulfate (TNICthio) - and with sulfur-containing aliphatic ligands – cysteamine and penicillamine were studied first as the NO-donors in pure solutions and in the combination with PABA. In E. coli cells with the combined action of PABA (0.01-5 mM) with nitric oxide donors we observed an inhibition of NO-signaling potency in the SOS (sfiA gene)- and the SoxRS (soxS gene) DNA repair pathway up to 3.5 fold, depending on the dose of PABA. PABA tested at 0.5 mM afforded 24% protection against the level of biofilm formation induced by TNICthio. Using the antioxidant-capacity assay, we observed a many-fold decrease in the ROS/RNS level production in the samples of E. coli cells with PABA and NO-donor-TNICthio.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7