Performance Comparative in Classification Algorithms Using Real Datasets

Hanuman Thota1,2, Raghava Naidu Miriyala1,2, Siva Prasad Akula2,5, K. Mrithyunjaya Rao3, Chandra Sekhar Vellanki1, Allam Appa Rao4, Srinubabu Gedela4,5,*

1D.M.S S.V.H. College of Engineering, Department of Computer Science, Machilipatnam-521002, India.
2Department of Computer Science and Engineering, Acharya Nagarjuna University, Guntur-522510, India
3Vaagdevi College of Engineering, Warangal-506005, India.
4International Center for Bioinformatics, Department of Computer Science and Systems Engineering, Andhra University, Visakhapatnam-530003, India
5Institute of Glycoproteomics & Systems Biology, Tarnaka, Hyderabad-500017, India

*Corresponding author: Srinubabu Gedela, Institute of Glycoproteomics & Systems Biology, Tarnaka, Hyderabad-500017, India, Tel: +91-40-27006539; Fax: +91-40-40131662; E-mail: srinubabau6@gmail.com

Received December 13, 2008; Accepted February 08, 2009; Published February 23, 2009

Copyright: © 2009 Hanuman T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Classification is one of the most common data mining tasks, used frequently for data categorization and analysis in the industry and research. In real-world data mining sometimes it mainly deals with noisy information sources, because of data collection inaccuracy, device limitations, data transmission and discretization errors, or man-made perturbations frequently result in imprecise or vague data which is called as noisy data. This noisy data may decrease performance of any classification algorithms. This paper deals with the performance of different classification algorithms and the impact of feature selection algorithm on Logistic Regression Classifier. How it controls False Discovery Rate (FDR) and thus improves the efficiency of Logistic Regression classifier.

Keywords: Classification; Data mining; Logistic regression classifier; Feature selection algorithm and false discovery Rate

Introduction

Data mining is the process of finding hidden patterns from data. It has wide range of applications such as, predicting stock prices, identifying suspected terrorists and scientific discovery like analysis of DNA microarray etc, as Shelke, et al., 2007 said researchers can now routinely investigate the biological molecular state of a cell measuring the simultaneous expression of tens of thousands of genes using DNA microarrays. Datamining can be used in the classification of proteins by basing on its primary structures (sequences) is presented. It contains four steps which include textmining, feature selection, datamining and classification. The sequences of protein are collected in a file (Mhamdi et al., 2004). In real-world data mining sometimes it mainly deals with noisy information sources, because of data collection inaccuracy, device limitations, data transmission and discretization errors, or man-
made perturbations frequently result in imprecise or vague data. Two common practices are to adopt either data cleaning approaches to enhance the data consistency or simply take noisy data as quality sources and feed them into the data mining algorithms. Either way may substantially sacrifice the mining performance (Wu and Zhu, 2008). Noisy information plays a critical role when making critical decisions, especially when using mining techniques in medical domains. The widespread availability of new computational methods and tools for data analysis and predictive modeling requires medical informatics researchers and practitioners to systematically select the most appropriate strategy to cope with clinical prediction problems, the collection of methods known as ‘data mining’ to deal with the analysis of medical data and construction of prediction models (Bellazzi and Zupan, 2008). Medical data mining is one of key issues to get useful clinical knowledge from medical databases. However, users often face difficulties during such medical data mining process for data preprocessing method selection/construction, mining algorithm selection, and post-processing to refine the data mining process (Abe et al., 2007). Temporal data mining is concerned with data mining of large sequential data sets, there are application areas that need knowledge from temporal data such as sequential patterns, although there are many studies for temporal data mining, they do not deal with discovering knowledge from temporal interval data such as patient histories (Lee et al., 2009).

A commercial Web page typically contains many information blocks. Apart from the main content blocks, it usually has such blocks as navigation panels, copyright and privacy notices, and advertisements, these blocks are called noisy blocks. The information contained in these noisy blocks can seriously harm Web data mining (Tripathy and Singh, 2004). Noisy data is inherent in the field of data mining. If prior knowledge of such data was available, it would be a simple process to remove or account for noise and improve model robustness. Otherwise, it’s a big disaster. Unfortunately, in the majority of learning situations, the presence of underlying noise is suspected but difficult to detect (Liu et al., 2005).

The performance of a classification algorithm in data mining is greatly affected by the quality of data source. Irrelevant and redundant features of data not only increase the cost of mining process, but also degrade the quality of the result in some cases (Wu et al., 2006). Each algorithm has its own advantages and disadvantages; comparative study of Dr. Shuqing Huang is considered, as per his study and results by using UCI real data sets are used in the experiments.

Five groups of UCI real data sets are used. They are:

i) Crab species data with 200 instances, 5 attributes, 2 classes.
ii) Diabetes data with 768 instances, 8 attributes, 2 classes.
iii) Housing database with 506 instances, 12 continuous attributes, 5 classes.
iv) Iris plant database with 3 classes, 4 numeric attributes, 150 instances.
v) Spambase database with 4601 instances, 57 attributes and 2 classes.

These data sets are used from http://archive.ics.uci.edu/ml/index.htm to algorithms Decision tree, Support Vector Machine and Logistic Regression classifier.

Table 1 shows performance on different datasets available from the above mentioned repository.

<table>
<thead>
<tr>
<th>Real datasets</th>
<th>Decision tree</th>
<th>SVM</th>
<th>LRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crabs- species</td>
<td>87%</td>
<td>96%</td>
<td>82%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>74%</td>
<td>88%</td>
<td>76%</td>
</tr>
<tr>
<td>Iris</td>
<td>96%</td>
<td>95%</td>
<td>87%</td>
</tr>
<tr>
<td>Housing-data</td>
<td>74%</td>
<td>93%</td>
<td>94%</td>
</tr>
<tr>
<td>Spambase-data</td>
<td>93%</td>
<td>91%</td>
<td>90%</td>
</tr>
</tbody>
</table>

Table 1: The interpretation of Classification result between Decision tree, Support Vector Machine and Logistic Regression classifier.
machine has the highest classification precision most of the time. However, support vector machines are very time-consuming because of more parameters, demands more computation time. Compared to support vector machines, logistic regression is computationally efficient. Its results usually have static meaning. However, it does not perform well when data set exhibits explicit data structures.

Feature Selection Based by Controlling False Discovery Rate

Contemporary biological technologies produce extremely high-dimensional data sets from which to design classifiers, with 20,000 or more potential features being common place. In addition, sample sizes tend to be small here, feature selection is an inevitable part of classifier design (Hua et al., 2009). The objective of feature selection is to get a feature subset that has the best performance (Cho, 2009). The goal of feature selection is to select a subset of attributes from possible high dimensional feature space to a low dimensional spaces which is better suited for retrieval or learning purposes.

<table>
<thead>
<tr>
<th></th>
<th>Decision tree</th>
<th>SVM</th>
<th>LRC</th>
<th>LRC+FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crabs- species</td>
<td>87%</td>
<td>96%</td>
<td>82%</td>
<td>85%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>74%</td>
<td>88%</td>
<td>76%</td>
<td>77%</td>
</tr>
<tr>
<td>Iris</td>
<td>96%</td>
<td>95%</td>
<td>87%</td>
<td>97%</td>
</tr>
<tr>
<td>Housing-data</td>
<td>74%</td>
<td>93%</td>
<td>94%</td>
<td>95%</td>
</tr>
<tr>
<td>Spambase-data</td>
<td>93%</td>
<td>91%</td>
<td>90%</td>
<td>91%</td>
</tr>
</tbody>
</table>

Table 2: The interpretation of the result between Decision tree, Support Vector Machine and Logistic Regression classifier with feature selection.

were used. They are crab species data, diabetes data housing database, IRIS plant database, spam database. Classification results after applying false discovery rate (FDR), results taken from the observation of Dr. Shuqing Huang.

The False Discovery Rate (FDR) of a set of predictions is the expected percent of false predictions in the set of predictions. For example if the algorithm returns 100 genes with a false discovery rate of 3 then we should expect 70 of them to be correct. Different features play different roles in classifying datasets. Unwanted features will result in error information during classification which will reduce classification precision. Feature selection can remove these distractions to improve classification performance. As shown in the experimental results, after feature selection using the proposed algorithm to control false discovery rate, the classification performance of logistic regression classifier was improved.

Conclusion

The experimental results show that when feature selection applied on Logistic Regression classifier controls False Discovery Rate and thus improves efficiency of Logistic Regression classifier. FDR controls the expected proportion of incorrectly rejected null hypotheses (errors). Even though it can’t be eradicated completely but can improve the efficiency of the regression classifier further.

Acknowledgement

We are extremely thankful to Dr. Shuqing Huang, Tulane University, U.S.A and Dr. Raghu B. Korrapati, Walden University, U.S.A for
their literature. Dr. Rama kishore, M. Nancharaiah and V. Rakesh for their moral support.

References

