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Introduction
Autism spectrum disorders (ASDs) are among the most common 

neuropsychiatric disorders, with an estimated worldwide prevalence 
of 1%-2.6% [1-3]. The affected individuals display deficits in social 
communication, impaired language development, and the presence 
of highly restricted interests and/or stereotyped repetitive behaviours 
[1,2,4-6]. Although a wide variety of treatments have been used to treat 
individuals with ASD, no curative therapies are currently available. 
Treatment approaches to autism generally focus on educational 
and behavioural interventions. Drug therapies are mainly used to 
treat specific disruptive behaviours, such as anxiety, irritability, 
hyperactivity, inattention, obsessive-compulsive symptoms, sleep 
disturbances, aggression and self-injury, which are usually associated 
with autism and negatively affect the success of educational treatments 
and quality of family life [7-14]. 

Pharmacological treatment of ASDs is challenged by the 
complexities of the disorders in nature [9-11]. Obviously, the treatment 
is often complicated by the frequent presence of comorbid disorders, 
such as epilepsy, bipolar disorder, attention deficit-hyperactivity 
disorder, gastrointestinal and immune system disorders [12,13]. 
Usually, medications are used in combination to treat accompanying 
symptoms including anxiety, obsessions, hyperactivity, impulsivity, 
irritability and aggressive behaviours. The most frequently prescribed 
medications for patients with ASDs include antipsychotics, antidepres
sants, anticonvulsants, mood stabilizers, and cholinesterase inhibitors 
[7,8,10-13,15-17]. However, the efficacy of most of these medications 
among patients with ASDs has been uncertain. In fact, few placebo-
controlled, double-blind studies have been performed on any of these 
medications. As a result, much of our current knowledge of treatment 
of ASDs has been from trials-and-errors regarding the selection of 
medications. Little attention has been paid to the atypical responses of 
individual patients to certain medications and the genetic background 
of these individuals [10,11,14,18]. Thus, a pharmacogenomic approach 
is definitely needed to better the treatment of ASDs. 

Genetic diversity of autism

Genetic diversity, most notably through single nucleotide 
polymorphisms (SNPs) and copy-number variations (CNVs), 
together with specific environmental exposures, contributes to both 
disease susceptibility and drug response variability [19-21]. ASDs 
represent a heterogeneous group of disorders that are highly heritable, 
with heritability indices estimated at 85%–92% [3,22]. Advances in 
identifying the genetic causes of ASDs first came from the study of 

syndromic autism, which pinpointed the causes of disorders, such as 
fragile X syndrome, Rett syndrome, tuberous sclerosis, and Timothy 
syndrome [22-25]. However, the challenges were more from identifying 
the genetic causes of nonsyndromic or idiopathic autism given the 
lack of defining features besides the neurobehavioral phenotypes and 
the fact that the majority of cases were simplex. The genome-wide 
approaches that are capable of screening thousands of DNA mutations 
or structural variants at once have been applied to the studies of ASDs. 
Many significantly associated SNPs have been identified in these 
studies. Recent studies of simplex and mostly nonsyndromic ASDs, 
have established de novo copy number variants (CNVs) as the cause of 
5%–8% of cases of simplex autism [26-28]. 

Generally, ASDs have been widely viewed as complex genetic 
disorders, with each gene having a minor effect on the overall 
clinical presentation [19,20]. With the development of genome-wide 
association (GWA) studies, more comprehensive approaches will 
become available and greatly accelerate genomics research in ASDs. 
The genome-wide study of ASDs will link more genotypes to their 
biological phenotypes, thus provides a foundation for the development 
of diagnostic screens as well as pharmacogenomic studies [29-33]. 
Furthermore, some of the genes associated with the identified SNPs or 
CNVs will offer new insight into the pathology of ASDs as well as novel 
therapeutic targets for treatment of ASDs [19-21,34,35].

Development of pharmacogenomics in autism

The goal of pharmacogenomics is to dissect the clinical variability 
between individuals with regard to drug therapy and to predict 
drug response and side effects based on genetic diversity [36-
40]. In comparison with other neuropsychiatric disorders, such 
as drug addiction, schizophrenia and depression [37-39,41-43], 
pharmacogenomic research in ASDs is still in its initial stage [18]. 
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Challenges facing pharmacogenomics of ASDs are mainly from the 
lack of information about the biology of ASDs in addition to the well-
documented clinical heterogeneity within patients of ASDs [18,34].

In recent years, there have been a few encouraging studies of 
pharmacogenomics in ASDs. Antipsychotic medication is commonly 
used in children with ASDs, with risperidone one of the most 
popular atypical antipsychotics prescribed. Though risperidone 
significantly improves behavioural problems in most situations, it is 
also associated with mild adverse effects [44-46]. It is known that there 
are considerable individual differences in response to risperidone, 
both regarding therapeutic and adverse effects, which actually limit 
the therapeutic use of the drug [46-49]. Little has been reported on 
the genetic factors, which may underlie this individual variability in 
response to risperidone therapy, particularly for autism. Correia et 
al. [50] explored the effects of multiple candidate genes on clinical 
improvement and occurrence of adverse drug reactions in patients 
who received single therapy with risperidone up to 1 year. Candidate 
genes involved in the pharmacokinetics (CYP2D6 and ABCB1) and 
pharmacodynamics (HTR2A, HTR2C, DRD2, DRD3, HTR6) of the 
drug, and the brain-derived neurotrophic factor (BDNF) gene, were 
analysed in this study. Their results confirmed that risperidone therapy 
is effective in reducing some autism symptoms and cause few serious 
adverse effects. They further found that the HTR2A c.-1438G>A, DRD3 
Ser9Gly, HTR2C c.995G>A and ABCB1 1236C>T polymorphisms 
are predictors for clinical improvement with risperidone therapy. 
The HTR2A c.-1438G>A, HTR2C c.68G>C (p.C33S), HTR6 c.7154–
2542C>T and BDNF c.196G>A (p.V66M) polymorphisms influenced 
prolactin elevation. HTR2C c.68G>C and CYP2D6 polymorphisms 
were associated with risperidone-induced increase in body mass 
index (BMI) or waist circumference. This study thus identified for the 
first time several genes implicated in risperidone efficacy and safety 
in autism patients. It provides hope for the personalized therapy of 
risperidone in autism. Another study focused on escitalopram, a 
selective serotonin reuptake inhibitor (SSRI), which has been found to 
effective in the treatment of certain symptoms of patients with ASDs, 
including repetitive behaviours, anxiety, irritability, aggression and 
self-injurious  behaviours [51-53]. Since variation in the gene that 
codes for the primary protein target of SSRIs, the serotonin transporter, 
could be related to escitalopram response or final dose of treatment 
[52], a complex insertion/deletion/single nucleotide containing 
polymorphism in the promoter region of the transporter (5-HTTLPR) 
was chosen as the primary candidate polymorphism [54]. Owley 
et al. [55] determined the effect of 5-HTTPLR genotypic variation 
(low, intermediate, and high expression groups) on the response to 
escitalopram treatment of children and adolescents with ASDs. They 
found that groups with different haplotypes affecting expression of 
the serotonin transporter may differ in their response to escitalopram. 
Given that the study was carried out in a small sample of patients, 
replication in a larger independent sample is definitely needed to 
confirm whether serotonin transporter genotype is related to response 
to escitalopram in ASDs. Interestingly, the next most recent study 
investigated whether peripheral blood gene expression before treatment 
with risperidone is associated with improvements in severe behavioral 
disturbances following risperidone treatment in ASD patients. Lit et 
al. [56] compared exon expression levels in blood before risperidone 
treatment with pre–post risperidone change in Aberrant Behavior 
Checklist-Irritability (ABC-I) scores. They found that expression 

of exons within five genes (GBP6, RABL5, RNF213, NFKBID and 
RNF40) was correlated with change in ABC-I scores in all risperidone-
treated patients. Of these five genes, RNF40 is located at 16p11.2, a 
chromosome region involved in autism and schizophrenia [57,58]. 
They concluded that the expression of these genes before treatment 
is associated with subsequent clinical response. This study is the first 
to suggest that gene expression in blood is associated with and may 
predict the behavioral response to risperidone use in ASDs. The gene 
expression profiles identified here may reflect convergent downstream 
biological mechanisms across multiple genetic backgrounds that are 
associated with behavioral response to risperidone in ASDs.

Although the above studies have made significant progresses 
towards pharmacogenomics of autism, none of their results could 
entirely account for the heterogeneity in response to autism treatment, 
and all of the results have to be replicated or validated in further 
studies. Undoubtedly, large-scale genetic and gene expression analysis 
will be performed in the near future in many laboratories by using 
the technologies of functional genomics. The expected findings will 
provide novel insights into the pathophysiology of ASDs. Such detailed 
knowledge will ultimately have profound effects on the treatment of 
these disorders.

Prospective of pharmacogenomics in autism

Addressing the extensive unmet medical needs related to autism 
will require that novel pharmacotherapies be developed [14,59]. 
Numerous molecular mechanisms that could potentially be targeted 
have been discovered by basic research in genetics and neurobiology 
of autism, but clinical translation remains a challenge. Developing 
therapeutics targeting these mechanisms will require the approach of 
pharmacogenomics.

The pharmacogenomic approach takes advantage of recent 
advances in experimental genomics and proteomics, together with the 
available information of the Human Genome Project [32]. It will not 
only enable genome-wide screens of several millions of SNPs without 
the specific hypotheses or candidate gene strategy, but also functional 
investigations of genetic diversity and gene expression over the whole 
genome or proteome [32,33]. We hope that an improved understanding 
of complexities of ASDs by pharmacogenomic approach will 
continuously contribute to the optimization of current therapies and 
the development of novel and potentially more powerful therapeutic 
strategies for these disorders. Furthermore, the determination and 
identification of patient subpopulations in response to drug treatment 
will help individualize pharmacological therapy for patients of autism.
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