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Editorial

Handling of data below the quantification limit (BQL) continues 
to be a challenge in Pharmacokinetic (PK) analyses. Such data requires 
sophisticated methods to evaluate the precise PK profile. PK studies 
are an integrated part of the development program of a new drug. They 
are intended to define the time course of drug and major metabolite 
concentrations in plasma and other biological fluids in order to obtain 
information on absorption, distribution, metabolism, and elimination. 
PK information is used to extrapolate the safety and efficacy findings 
to the entire patient population who may receive the New Chemical 
Entity (NCE) in question. Today, population PK analyses are a regular 
part of the documentation of an NCE. PK analysis is performed 
by non-compartmental (model independent) or  compartmental 
modeling. Non-compartmental methods estimate the exposure to a 
drug by estimating the area under the curve of a concentration-time 
graph. Compartmental methods estimate the concentration-time 
graph using kinetic models.  While population PK approach in drug 
development offers the possibility of gaining integrated information on 
pharmacokinetics, not only from relatively sparse data obtained from 
study subjects, but also from relatively dense data or a combination of 
sparse and dense data. The two common methods for population PK 
are i) Standard two-stage approach (STS) and ii)the nonlinear mixed-
effects modeling approach (NLME). STS approach refers to fitting a 
pharmacokinetic model to the data of each individual; afterwards 
summary statistics are computed for the total collection of individual 
parameter estimates. Using this approach, the interindividual variance 
tends to be over estimated. Moreover, it is not applicable when the 
individual data are too sparse for individual model fits.While with 
NLME modeling, not only pharmacokinetic parameters but also 
interindividual variance parameters can be estimated. Mixed-effects or 
population models are more appropriate than the STS for the analysis 
of interindividual variation in PK.

However, the precision of the PK profile depends on the data 
used. PK data often contain concentration measurements below the 
quantification limit. While specific values cannot be assigned to these 
observations, nevertheless these observed BQL data are informative 
and generally known to be lower than the lower limit of quantification 
(LLQ). Setting BQLs as missing data violates the usual missing at 
random assumption applied to the statistical methods, and therefore 
leads to biased or less precise parameter estimation. By definition, these 
data lie within the interval [0, LLQ], and can be considered as censored 
observations. Common approaches for handling of concentration 
measurements reported as BQL, such as discarding the information or 
substitution with the quantification limit (QL) divided by two, have 
been shown to introduce bias to parameter estimates. Appropriate 
statistical methods dealing with censored data, such as maximum 
likelihood and Bayesian methods can be used to model PK data sets 
with BQL data. Beal [1] and Yang and Rogers [2] evaluated different 
methods for dealing with BQL data and investigate the impact of the 
amount of BQL observations on the bias and precision of parameter 
estimates in PK models under maximum likelihood method as 

implemented in NONMEM and a Bayesian approach using Markov 
chain Monte Carlo (MCMC) as applied in Win BUGS.

The methods used for the evaluation of PK data with BQL are i) 
discard all the BQL values ii) replace all the BQL observations with QL/2 
iii) replace all the BQL observations with 0 iv) each BQL observation x is
replaced by QL/2, except that any and all consecutive BQL observations
succeeding x are discarded v) discard the BQL observations, and under
the assumption that all the D(t) are normal, the method of maximum
conditional likelihood estimation can be applied to the remaining
observations vi) handle the BQL observations as fixed-point censored
observations; the maximum likelihood estimation method is used to fit
the PK model to all the observations, and the likelihoods forthe BQL
observations in particular are taken to be the likelihoods that these
observations are indeed BQL vii) similar to method vi) however it
includes an adjustment to recognize that a measurement cannot really
be negative viii) Bayesian approach using Markov chain Monte Carlo.

The first three methods are simpler and more familiar than the 
other methods. A potential problem in discarding the BQL observation 
is that the lower of the remaining observations misrepresent the 
true lower concentrations; the lower remaining observations are 
selectively too high. This can create a bias in the fit; hence this method 
clearly biases the parameter estimates, and therefore the parameter 
predictions. Replacement methods (ii and iii) are useful when there 
are very few observations, e.g., one early observation and one late 
observation. When the BQL values replaced by 0 (method iii), the 
BQL ‘‘replacement observations’’are always too low, again creating a 
bias. If one desires to use a simple method, then when the frequency 
of BQL observations is small, method which discards the BQL 
observations (method i) is better than any other such method. Method 
iv should only be used when it can be assumed that consecutive BQL 
observations reflect true concentrations that are decreasing. Using 
method v, the true lower concentrations are not misrepresented; the 
fact that the observed lower concentrations are obtained selectively is 
explicitly taken into account. With this method, the likelihood for the 
data, conditional onthe fact that by design, all (remaining) observations 
are above the QL, is maximized with respect to the model parameters.
Method vi allows the BQL observations to be retained, but handles 
these as censored observations, under the assumption that all the D(t) 
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are normal. The true lower concentrations are not misrepresented with 
this method. Simple substitution methods were problematic where a 
high proportion of BQLs were in the data. Methods using maximum 
likelihood estimations are more rational than the simple methods like 
replacement of BQL values with QL/2. A likelihood-based method as 
implemented in NONMEM was shown to have advantages over other 
simple substitution methods. Use of MCMC based Bayesian approach 
also has advantageous. One of which is that it is easy to calculate the 
posterior distribution for any other derived parameter. For example, 
in the situation of linear PK, total area under the concentration–time 
curve (AUC=D/CL) is usually an important parameter in correlating 
exposure with safety signals or clinical benefits. The posterior 

distribution of AUC as a parameter is formed by simply calculating the 
derived parameter (AUC=D/CL) for each sample from the posterior of 
CL. Analyses that maximized the likelihood of the data above the limit
of quantification and treated BQL data as censored provided the most
accurate and precise parameter estimates.
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