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Introduction
Our technical approaches were driven by anticipated requirements 

for forensic analysis of DNA samples [1]. First, to, mitigate effects of 
protocol choices and data processing pipeline parameter values [2-
4]. We minimize the nu MBer of initial assumptions and developed 
algorithms with a minimum nu MBer of parameters. Second, it 
is important to address run-to-run variability in measured DNA 
sequences due to chemical-reagent-lot variability, sequencing artifacts 
and sequencing errors, and experimental conditions. To address 
this second need, we recommend and have developed approaches 
for internally calibrating sequencing runs. Two types of standards 
are needed: 1) internal standards to evaluate system errors and 2) 
bioinformatics calibrant to correct for sequencing artifacts [5]. Finally, 
we address confidence in conclusions because reference genome 
databases (DB) contain only limited sampling of real-world biological 
diversity.

Forensics characterization of bacterial constituents

Metagenomics is an emerging discipline for microbial 
population(s) analysis based on sequence information obtained directly 
from samples without culture purification enabled by a growing nu 
MBer of bioinformatics tools being developed to address analysis of 

mixtures [6]. Genome mixture analysis for forensic characterization of 
constituent organisms is driven by several considerations.

First, reference DB such as Genbank will always be inherently 
limited due to biases introduced by selection of microorganisms to 
sequence and the vast dynamic genetic diversity of microorganisms. 
The degree to which sequences found to be “discriminatory” among 
reference DB genomes are actually unique is knowable to a degree of 
probability. This class of analysis has complementary value, however, 
in that certain sequence motifs, e.g., those that confer pathogenicity, 
etc., are informative, for other purposes.

In addition, reference DB is rapidly growing due to reductions in 
sequencing costs [7]. Forensic tools must therefore be computationally 
scalable. Using off-the-shelf tools, e.g. BLAST, to compare sequencing 

*Corresponding author: John P Jakupciak, Cipher Systems, 2661 Riva Rd,
Annapolis, MD 21401, USA, Tel: (410) 412-3326; Fax (410) 897-1066; E-mail:
j.jakupciak@cipher-sys.com

Received May 16, 2013; Accepted August 12, 2013; Published August 19, 2013

Citation: Jakupciak JP, Wells JM, Lin JS, Feldman AB (2013) Population Analysis 
of Bacterial Samples for Individual Identification in Forensics Application. J Data 
Mining Genomics Proteomics 4: 138. doi:10.4172/2153-0602.1000138

Copyright: © 2013 Jakupciak JP, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Population Analysis of Bacterial Samples for Individual Identification in 
Forensics Application
John P Jakupciak1*, Jeffrey M Wells1, Jeffrey S Lin2 and Andrew B Feldman2

1Cipher Systems, 2661 Riva Road, Annapolis, MD 21401, USA
2The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD 20723, USA

Abstract
Biodefense preparedness begins with the ability to detect and respond to bio-threats, based on accurate interpretation 

of genetic information with sophisticated, yet easy-to-use bioinformatics tools. Microbial forensics further enables 
attribution of microbial pathogen samples back to a suspected source. Sample characterization and traceability back to 
source are dependent on genome identification of specific targets within samples, comprehensive analysis of mixtures 
of populations’ present, and detection of major/minor variations in the identified genomes and comparison of sample 
genetic profile against other samples. Commercial Next Generation Sequencing (NGS) platforms offer the promise 
of dramatically higher detection sensitivity and resolution of forensic DNA samples than is possible with methods in 
current use. Before applying these technologies for forensic analyses of bacterial samples, however, it is critical to fully 
elucidate the benefits, caveats and pitfalls of NGS for hypothesis testing in comparative analyses, as ultimately this will 
be required for NGS use both as an investigative tool and tool for attribution in courts of law.

Methods: We developed and evaluated novel probabilistic algorithms to process metagenomic sequence data from 
direct sample sequencing to identify genomes present in mixtures. 

Results: We present a pipeline for reference-free sample-to-sample comparisons to improve target characterization 
beyond one microorganism to characterization of comprehensive sample content. Our tools strengthen statistical 
confidence to trace the ancestry of samples and attribute samples to source with probabilistic certainties on many 
targets instead of a single genome.

Conclusion: This study developed a novel reference free, bioinformatics strategy to account for and identify genetic 
diversity in samples. Sequence variants must be non-arbitrarily confirmed in both forward and reverse reads at a rate 
above the background noise level of sequencer machine error. A similarity distance metric compares genomes within 
a range of near relationships. Using sequence data from bio-threat agents, we successfully attributed known related 
strains together, and excluded near relation of known unrelated strains. The major strengths of this forensic method are 
the non-arbitrary determinations of data validation and relatedness metrics, as well as the ability to compare microbial 
genomes with or without a reference database of related genomes.
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reads against entire DB content is computationally costly and cu 
MBersome [8,9]. Further, as the cost of sequencing decreases, the cost 
of data analysis of volumes of sequence information increases [10]. 
There is a critical need for efficient bioinformatics tools [11].

Unlike reference DB entries, single sequences do not capture 
the diversity of genomes in a population. Population structure-the 
distributions of genetic variability-within the organism constituents 
in forensic samples (cultured and non-culture) add uncertainty to 
genomic compositional description of samples. With respect to forensic 
applications, sample sequences inherently contain unknown genetic 
variation with respect to known reference DB genomes on account of 
multiple subtle and stressful environmental selection pressures.

Lastly, for sample constituents present in very low proportion 
(minor sample content), sampling statistics and sequencing process 
errors place limits on their detection. Therefore, quantitative metrics 
for characterizing uncertainty in detection relative to relevant noise 
measures are needed [12-16]. With appropriate accommodation of 
these considerations, accurate identification of genomes in mixtures 
can be successfully addressed. We evaluated a three-step approach to 
characterizing genome constituents in samples: 1) Rapid filtering of 
sequencer reads using non-alignment methods. 2) Characterization of 
reads for consistency with DB genomes using a quantitative hypothesis 
test based on characterization of reference genome coverage breadth 
as a function of coverage depth. 3) Application of hypothesis testing 
with conservative p-value thresholds to identify candidate reference 
genomes for detailed, alignment-based mapping of total reads to 
genetic variation with respect to closest known organisms in DB. The 
overall approach is depicted in Figure 1.

Our read filtering scheme is based on representation of individual 
reads and database genomes as a collection of n-mer words determined 
by sequentially passing a window n-base in width across the read or 
genome sequence one base at a time and recording n-mer words found 
in the sequence. By requiring a certain fraction of n-mers per read to 
match those found in reference genomes, we can rapidly filter reads 
according to their n-mer content with respect to references. 

For example, for an n-mer length of 25 and a read length of 100, 

there are 76 n-mer words, 25 bases long. A matching fraction of ~0.2 
requires matching 15 n-mers from the read against those found in 
the reference DB. While such a low fraction comes at the expense 
of specificity (i.e., the shorter n-mers capture diversity with respect 
to population variation (for example a single base change at one site 
or small insertion) and sequencing noise, which could produce. For 
n-mer length 25, a single based change (noise or single nucleotide 
polymorphism–SNP) will modify up to 49 of the 76 n-mers per read 
per 100 base long read. Thus, use of thresholds below ~0.3 enable rapid 
n-mer filtering of reads and provides balances assessment of noise and 
population variability. Although alignment-based methods perform 
well against such genetic differences between a reference and a read, the 
matching process is much more computationally onerous, particularly 
for large reference DB and matching millions of reads [17,18]. Further, 
sequence artifacts need to be removed, which will decrease accuracy of 
bioinformatics tools. The threshold is a floating value for read filtering 
dependent on each sequence run. It is selected by the user to establish 
how much data to include; alternatively, it can be viewed as the cut-off 
of noise. The decision to include/exclude reads is a balance of long vs 
short n-mers and a balance of accurate identification versus tolerating 
noise, artifacts, and error. The example in the text explains the value, 
but specifically, the value of 0.3 translates into processing n-mers 
with matching 22 bases from the read to the reference. The current 
text points out that a value of 0.2 translates into matching n-mers of 
approximately 15 base pairs. 15 bp n-mers are common across genomes 
and this effects accuracy. A new reference has been added that illustrates 
the size of n-mers and their “uniqueness” value [19]. Thresholds greater 
than 0.3 would reduce the nu MBer of n-mers used in the hypothesis 
testing to reads specific to single genomes, but they would not include 
in the analysis reads that may contain point mutations, important to 
understanding the population.

The choice of n-mer length comes with, trade-off of resolution of 
genetic differences from reference against the specificity advantage 
of using longer n-mers (~20-25 long) which are more unique among 
bacterial genomes and provide higher specificity in the filtering step. 
The choice also represents a balance of computing storage, memory, 
and rapid access requirements. To address memory, storage, and rapid 
access requirements, we developed a unique hashing approach to 
storing and retrieving long n-mers from reference database genomes. 
For a given n-mer, the total possible nu MBer of words is 4n; thus the 
counts of a specific n-mer in a genome can be recorded in an array, 
dimension N=4n, entities (8-bit character, 32-bit integer, etc…). 
For example, for n=12, we have N=16,772,216, which uses a modest 
amount of computer memory, N*4 bytes or ~48 MB, for 32-bit integer 
storage. As n increases, we begin to hit the limit of available storage 
in computer random access memory (RAM). For n=16, we require 
~17.2 GB of RAM for integer storage or 4.3 GB for 8-bit storage. For 
a given n-mer, each sequence can be hashed to a unique integer array 
index by mapping specific bits in the integer to A,T,C,G, and their 
positions within an n-mer word. This allows a rapid array lookup. We 
benchmarked the software on a MacBook Pro and Dell Server with 8 
processors. Scoring 2,500,000, 100 base reads from a Y. pestis C090 
sample against the entire Genbank database took ~3 hours on the 
MacBook Pro and 80 minutes on the Dell system.

To populate a n-mer database and rapidly retrieve n-mer counts 
for a specific ~25-mer, we break up the n-mer into two separate n-mers, 
one that is used as rapid indexing into an array and the second that 
is used in an ordered binary tree, with the root of this tree associated 
with the array index determined by the first n-mer. This algorithm 
provides a tunable compromise between memory storage and speed 
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Figure 1: Process flow for detecting constituent organisms in a test sample 
using a “noise” calibration, n-mer read filtering to deconvolve a mixture, 
and a hypothesis test (Z-value). The hypothesis test measures deviation of 
the observed matching rate of n-mers data against a reference genome’s 
n-mers, and compares it to the mean deviation of a known organism 
(calibrant) against its reference when sequenced in same run. The Z value 
is the deviation expressed in terms of standard deviations of measurements 
for the calibrant.
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of lookup. For 25-mers, using a 12-mer first index and 13-mer second 
index into the tree, typical memory usage for a complete genome is ~2 
GB. For purposes of filtering, each read is tested against all DB genomes 
and reads satisfying the threshold criterion are retained and scored 
collectively against the particular reference genome using hypothesis 
test. A set of notional results is shown in Table 1.

Our hypothesis test for the presence of specific reference genome’s 
presence/absence in samples is based on quantitative metrics reflecting 
coverage breadth dependence on coverage depth of each sequencing 
run. The metrics were derived using a rapid non-alignment approach 
and is estimated by measuring the specific relationship for an internal 
calibrant organism that is an exact consensus sequence match to its 
DB reference genome. To measure coverage depth and breadth, the 
reference genome is indexed into its constituent n-mers. This collection 
of n-mers is the signature for the organism. For a genome of ~5 
MBases, the total signature is ~8 MBases, including forward/reverse 
reading and allowing for considerable non-uniqueness of n-mers for 
n=12. Total possible 12-mers are 412 or about 16 million; thus for 
any given bacterial reference genome, the probability, p, of presence/
absence of an n-mer is ~ 0.5. For larger n-mers than 12, the DB will be 
more sparsely populated (more unique n-mers) and for smaller n-mers 
more densely populated (less unique n-mers).

The relationship between signature coverage depth and signature 
coverage breadth when NGS reads n-mers are accumulated and then 
compared for presence/absence to those of a reference genome is a 
function of several factors: uniformity of representation of reference 
genome in the reads; fraction of reads derived from population variants 
in the sample; accumulation of sequence artifacts and sequencing 
error rate during the run. Assuming uniform coverage during DNA 
extraction, shearing, and other sample processing steps prior to 
the NGS run and a single population variant exactly matching the 
reference genome, the signature n-mer detection rate as will increase 
monotonically with depth of signature n-mer coverage. We define 
coverage as the count of signature n-mers accumulated divided by the 
total nu MBer of signature n-mers.

Calibration analysis using expected signature coverage breadth as 
a function of signature depth segregates genomes in a mixture from 
near neighbors, which share genome content. This metric of the totality 
and uniformity of genome coverage provides a critical fundamental 
parameter for definitively detecting presence of a specific organism 
in samples. It can be used to establish a profile of the genomes of the 
populations encompassed within the unique genetic boundaries of the 
sample.

Results
Quantitative distinguishing genome content

Data from specifically designed proof-of-concept experiments 
were collected using samples prepared by CUBRC and NGS sequenced 
by the US Army Edgewood Chemical and Biological Center (ECBC) 
at Aberdeen Proving Ground in MD. To demonstrate the concept, 
we analyzed NGS data for select agent pathogens. A single colony was 
passaged into 12 different plates. These twelve bacterial cultures were 
maintained separately over the course of seven more passages. Each 
culture passage was started with a single clonal colony streaked out on a 
petri dish. This created a single genome bottleneck at each passage step. 
Mutational variations differentiating each lineage were thus a result of 
initial variation in the source clonally derived culture plus mutations 
accumulated during the course of the eight growth and passage steps. 

Five clones of the same lineage after passage 8 were sequenced and 
compared. Since the start of each passage begins with a single cell, 
any differences between different clones in this lineage must be due to 
mutations that arose during this single growth stage, laboratory error 
that passaged more than one cell to the next flask, or it must be due to 
sequencer machine error.

A summary of the raw single ended read data for the five genome 
samples is given below.

Nu MBer of runs:	 28	

Average reads/run:	 3.0M	

Calculated nu MBer of reads needed for 15X average coverage 
depth=~1M

Two runs had below 15X average coverage depth. Strains: Yersinia 
pestis CO92 (BEI#NR-61),

Burkholderia pseudomallei MSHR668 (BEI#NR-9922), 
Burkholderia mallei China 7 (BEI#NR-23).

Each organism was cultured on alternating media consisting of 
standard broth followed by selective media agar plates for a total of 
seven (7) passages, followed by DNA isolation from the eighth passage 
liquid culture. Burkholderia mallei and B. pseudomallei were alternately 
cultured in tryptic soy broth and PC agar. Yersinia pestis was alternately 
cultured in BHI broth and CIN agar”.

Two sequencing runs were performed using colony isolates of Y. 
pestis, B. mallei, B. pseudomallei, and B. globigii (B.g.)/ B. atropheus. 
Sequencing was performed on an Illumina HiSeq 2000 system and 
up to 100 M, 100 bases were acquired in a single Illumina flow cell 
lane. Figure 2 shows the calibration curves (probability of detecting 
a signature n-mer as a function of mean signature n-mer coverage) 
obtained in Run 1 and Run 2. The error bars reflect the upper value of 
the 95% confidence interval for standard deviation of the measurement 
obtained over 3 sets of statistically independent reads in the single 
flow cell data. The plot also indicates values obtained for B. globigii 
sequencing during the same runs but in a separate flow cell lane using 
unfiltered reads. The data clearly indicate that the calibration captures 
run specific conditions, and that these conditions are not identical 
between runs. Run 1 and Run 2 represent isolate runs. They are not 
mixtures. This is an important point and not readily discussed in papers 
involving sequence analysis. The variance observed in Run 1 and Run 
2 is significant because the isolates analyzed are from the identical 
source, but they are different sequencing runs. The data illustrate that 
the “same” material does not have the “same” sequence information. 

R
ea

d 
#

Bacteria Genomes
A B C D

1 95 5 0 23
2 98 0 3 4
3 92 3 4 0
4 5 0 95 2
5 3 2 100 3
6 2 4 98 14

Calculate % of 12-mers per read that match each database entry

Genome A assigned reads: 1, 2, 3, …
Genome C assigned reads: 1, 2, 3, …

Table 1: Notional figure showing filtered reads (#1-5) and assignment to genomes 
for hypothesis testing based percent of matching n-mers per read to n-mers in 
reference genomes (A, B, C, D).  The n-mers matched in the genome need to be 
contiguous, as they are in the read.
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Hence run to run variation is greater than the 1% “error” referenced in 
consensus sequencing. This is a critical difference, because consensus 
sequencing is much different approach than using sequencing to 
characterize populations in samples.

The probability, P (detect) at given mean signature coverage in Run 
2 is significantly higher than in Run 1, indicating a higher noise rate in 
Run 1. This can also be seen in Figure 3, which shows mean signature 
coverage as a function processed reads and indicates a higher base 
calling error rate in Run 1 than in Run 2.

Hypothesis testing: we calculate P (detect) for observed mean 
signature coverage from our reads and compute a Z-value (statistic) 
by subtracting actual measured P (detect) from the interpolated value 
and represent this difference in units of standard deviations. Tail 
probabilities (probability of observing a particular value greater than 
or equal to Z by chance) associated with these normalized Z-values 
can be calculated using error function integrals. Z values <~2.0, given 
probability values <~0.01. To illustrate distribution of Z values obtained 
for unfiltered Bg reads at mean signature coverage up to 150x, we plot 
values measured using within run calibration and external calibration.

The value represents the expected value from true match to a 
reference. The measured value (the hypothesis test) is the measurement 
on actual run data. To achieve accurate genome identification from 
populations of reads against reference database genomes using the 
calibration, we compute mean signature coverage for the reads against 
the reference, then interpolate from the calibration to estimate the 
predicted P (detect) for an observed mean signature coverage for a true 
match. We then assume a Gaussian distribution with mean given by 
the interpolated value and standard deviation given by the maximum 
standard deviation in the interpolated portion of the calibration curve. 
We compute a Z-value by subtracting the actual measured P (detect) 
from the interpolated value and represent this difference in units of 
standard deviations. Tail probabilities (probability of observing a 
particular value greater than or equal to Z by chance) associated with 
these normalized Z-values can be calculated using error function 

integrals or looked up in published tables. |Z| values <~2.0 given 
probability values <~0.05. The interpolated value could be considered a 
pre-determined value, because it is based on a reference genome. 

In each case, a reference sequence with the same strain name as 
that sequenced organism was in the Genbank database: Yersinia pestis 
strain C090, Burkholderia mallei strain China 7 (ATCC 23744), and 
Burkholderia pseudomallei strain 668. In the general case, a single colony 
isolate of a cultured bacterium will correspond to a single constituent 
of the parent population and will accrue new random (and perhaps 
fitness-selected) mutations during propagation in media resulting in 
differences in sequence content with respect to the reference genome. 
In the case of novel isolate of an organism, its genetics differences 
with respect to reference strains could be significantly high. Hence, we 
introduced contextual Z-value, where genetic differences with respect 
to genome DB signature content is compared to typical within species 
differences. The computed contextual Z-values enable inference of 
whether a novel organism is consistent with its nearest neighbor in the 
reference DB within a resolution comparable to select genus/species/
strain contexts. In our biothreat agent experiments, all Genbank genome 
strains of each organism were used to compute P (detect) for pair-wise 
comparisons. The mean and standard deviation of these values are then 
used to provide context: for the measured signature n-mer coverage on 
its nearest neighbor genome, we compute the calibration curve value 
of P (detect) as scale the pair-wise context values by this weighting to 
determine the context Z values.

The hypothesis testing results for Y. pestis C090 are shown in panel 
A of Table 2. A Z-value of 0.12 is obtained. This result is consistent with 
the exact database genome entry being present in the sample within 
the sequencing error and population structure variation as measured in 
calibrant sequences. The analysis was performed for 10,000,000 reads. 
The Z-value against strain KIM is borderline acceptable detection and 
it would be the nearest neighbor if strain C090 were not in the Genbank 
database. In this case, the Y. pestis context Z-value is below 2.0 and 
indicates that while the sample is not likely an exact match for species 
KIM, Nepal, etc., it would most certainly be consistent with a Y. pestis. 
Panel B in Table 2 shows the results from Y. pestis C092 and B. globigii 
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Figure 3: Example data used to compute the calibration curves in Figure 
2 showing the mean signature n-mer coverage as a function of reads for 
the Run 1 and Run 2 calibrant. Note n-mer matching is higher at fixed read 
count in Run 2 than Run 1 indicating a reduced base-calling error rate for the 
conditions in Run 2.

1.000

0.999

0.998

0.997

0.996

0.995

0.994

0.993

10             12             14             16             18             20

Bg Test (Run1)
Bg Test (Run2)

Mean signature n-mer coverage

P
ro

b 
(d

et
ec

t) 
si

gn
at

ur
e 

n-
m

er

Calibration Run1 (Bg)

Calibration Run2 (Bg)

Figure 2: Calibration curves plotting the mean signature n-mer coverage of 
the reference genome (Bg strain) versus probability of detecting n-mers for 
two different Illumina runs. The errors represent the upper 95% confidence 
interval of the standard deviation for the triplicate measurements for each 
data point. Test measurement of a separate preparation of the Bg calibrant 
run in a separate flow cell lane of each run is indicated by the circle (Run 1) 
and X (Run 2). Note the calibration captures the noise conditions in each run 
with high precision, and that the curves are not identical between runs.
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sequence analysis at much lower signature coverage of signature 
n-mers. There is greater uncertainty in the scores against the various 
Y. pestis. All 5 strains are consistent with being the sample sequenced, 
yet other Yersinia entercolitica and pseudotuberculosis) are clearly 
excluded even at lower coverage. We have included B. globigii in the 
table to illustrate the context Z value concept further. Here B. globigii is 
scored against the B. globigii reference genome and its nearest known 
neighbor in Genbank, B. subtilus, which shares 80% genetic identity 
with against the B. globigii reference genome and its nearest known 
neighbor in Genbank, B. subtilus, which shares 80% genetic identity 
with B. globigii.

The results for Bm and Bp sequences (10,000,000 reads) are shown 
Tables 3 and 4, respectively. In each case the lowest Z value is associated 
with the correct DB strain. The low Bm contextual Z values for the Bm 
even when scored against B. pseudomallei reference genomes would 
indicate that the sequenced samples was consistent with a Burkholderia 
even if B. mallei were not in the reference database. Note that Z=3.06 is 
a bit high compared to the Bg and Yp cases. The same is true for the B. 
pseudomallei sequence in Table 4. 

Forensic comparison of consensus sequences of bacteria

Forensic analysis of bacterial samples requires characterization 
of specific genetic variations of candidate constituent organisms that 
were identified through the triaging process. Reads were aligned using 
various algorithms, such as NCBI BLAST, SOAP, BFAST, etc., to 
reference genomes for elucidation speed and specificity. 

For example, we compared B. anthracis Illumina sequence 
data from two independent sequence alignment pipelines with two 
independent investigators choosing parameter values. Pipeline A 
used the SOAP alignment tool to map the reads. SOAP is capable 
of modeling small contiguous insertions and deletions as well as 
mismatches (1-2 bases) and has a read length limitation of 60 bases. 
SOAP has difficulty accurately mapping reads that have more than 
two non-contiguous mismatches in a single stretch of bases. Pipeline 
B used an integrated set of public domain tools and a custom SNP 
calling method that uses minimal assumptions. Pipeline B is shown in 
Figure 4. The BFAST algorithm is used to find a candidate alignment 
position for each read. The mapping depends on a set of index masks 
to determine which locations in a read require matching as part of the 
scoring process. Following selection of the best scoring alignment for 
each read, the reads are annealed to the local reference using Smith-
Waterman algorithms. The aligned reads are converted to the public 
domain SAM format, sorted according to position along the reference 
and then submitted for mPileUP analysis via the Samtools software 
suite. The mPileUP tool provides a useful output for quantifying local 
genome coverage, base calls at each reference genome position, indels, 
and whether base calls came from a forward or reverse direction.

Declaration of a SNP with respect to the reference genome depends 
on a threshold count for the non-reference matching base calls at each 
genome position. The subtlety of the problem is illustrated in Figure 
5, which plots distribution of the fraction of non-reference calls per 

Mean signature n-mer coverage = 7.5

Table 2: A: Signature matching results for a pure Y. pestis C090 run showing 
reference genome database Z values, probability of detecting signature n-mers 
(Pd)  Z values < ~2.0 are considered consistent with the reference organism being 
present in the sample within the limits imposed by base calling noise and population 
structure (“biological noise”). The contextual Z values represent the deviations of 
the observed Pd from that expected based on the calibration at the same coverage 
in units of standard deviation of Pd among all other known Yp reference sequences.  
If Y. pestis C090 was not in the database, KIM strain would be the best scoring, 
but with Z value > 2.0.  However, here the contextual Z value would tell us that the 
distance from Yp KIM is still well within the distances of Yp among themselves, so 
treating the sample as an unknown we could state it is very likely a Y. pestis. B) 
Z value and contextual Z values for Yp and Bg and much lower coverage of the 
signature n-mers.  Here the data for Yp are consistent with 4 known Yp strains. 
Note the high Z value for B. subtilis, the nearest known neighbor of Bg.  It has an 
~80% signature homology with Bg, showing the high sensitivity of this method to 
small genomic change.

Mean n-mer coverage Pd n-mer ZCAL Context ZYp

Y.pestis CO90 64.83 0.99992 0.12 -1.96
Y.pestis KIM 64.23 0.99966 2.87 -1.93

Y.pestis Nepal 64.95 0.99939 5.53 -1.91
Y.pestis Angola 65.28 0.99937 5.78 -1.91

Y.pestisPestoides 64.11 0.99888 10.91 -1.85

A

Contextual
Pd n-mer ZCAL ZCAL ZCAL ZCAL

B.globigiiDugway 0.9843 0.02 -0.78 -1.96 -2.76
B.subtilus 0.6810 68.07 615.42 30.14 2.17

Y.pestis CO90 0.9790 1.22 9.99 -1.40 -2.67
Y.pestis KIM 0.9780 1.45 12.02 -1.29 -2.66

Y.pestisPestoides 0.9725 2.7 23.20 -0.71 -2.57
Y.pestis Nepal 0.9760 1.90 16.08 -1.08 -2.62
Y.pestis Angola 0.9755 2.02 17.01 -1.03 -2.62

Y.pseudotuberculosis 0.9080 17.30 154.24 6.12 -1.52
Y.enterocolitica 0.9080 17.30 154.24 6.12 -1.52

B

Table 3: Z values and contextual Z values for Burkholderia mallei strain China 
7, which is most closely matched to B.mallei ATCC 23744.  Scores against other 
Burkholderia are shown for context.  While the Z value of 3.06 is high, we show 
that this is due to far greater population structure (“biological noise”) in B. mallei 
samples as compared to the Bgcalibrant sample, as well as consensus SNPs.

c Mean n-mer 
coverage

Pd n-mer ZCAL ContextualZBm

B.malleiATCC 23744 116.50 0.99985 3.06 -0.73
B.malleiSAVP1 121.36 0.99800 49.93 -0.66

B.malleiNCTC-_10229 116.75 0.99660 79.13 -0.60
B.malleiNCTC_10247 116.13 0.99650 79.13 0.61
B.pseudomallei1106a 97.88 0.94000 1015.70 1.63
B.pseudomallei668 97.65 0.93720 1064.30 1.74

B.pseudomalleiK96243 94.59 0.92850 1191.05 2.09
B.pseudomallei1710b 93.50 0.92400 1201.05 2.25

Burkholderia 383 70.86 0.82600 1770.90 6.12
Burkholderiathailendensis 88.56 0.88030 1839.60 3.99
Burkholderiamultivorans 80.85 0.83960 2055.80 5.59

Table 4: Z values and contextual Z values for Burkholderia pseudomallei strain 
668.  As for the B. mallei, the elevated Z value against the reference is attributable 
to greater n-mer diversity (population structure) as well as additional consensus 
SNPs compared to the Bg calibration sample.

Mean n-mer 
coverage

Pd n-mer ZCAL Contextual ZBp

B.pseudomallei 668 98.86 0.99982 2.87 -1.65
B.malleiSAVP1 113.50 0.98680 278.50 -1.54

B.malleiATCC_23744 108.55 0.98550 282.00 -1.52
B.malleiNCTC_10247 108.50 0.98530 287.91 -1.53
B.malleiNCTC_10229 109.04 0.98520 293.79 -1.53
B.pseudomallei1106a 95.55 0.96830 528.05 -1.38

B.pseudomalleiK96243 92.37 0.95630 682.25 -1.28
B.pseudomallei 1710b 91.42 0.95310 755.40 -1.24

Burkholderia 383 70.86 0.82600 1770.90 6.12
Burkholderiathailendensis 88.56 0.88030 1839.60 3.99
Burkholderiamultivorans 80.85 0.83960 2055.80 5.59
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genome position and is shown for our Bg calibration run. The dotted 
line is the total of the non-reference-matching fraction, while the black 
line is the maximum fraction of all identical non-reference base calls, 
with the requirement of confirmation in at least one read in forward and 
in the reverse directions. The red line is the fraction of black line calls 
that are confirmed in replicate statistically independent sets of reads. 
This true biological diversity in the bacterial population sequenced 
and/or systematic errors of reads inducing phantom diversity [20].

We compared SNP calls through Pipeline B to those of Pipeline 
A and as expected, there was concordance as well as discordance. The 
most typical discrepancies are shown in Figure 6, which shows the 
mPileUP output around four distinct discrepant sites. In the figure, a 

period indicates a match to the reference in the forward read direction 
and a comma indicates a match in the reverse direction. Non-matching 
base calls in the forward reading and reverse reading directions are 
indicated by upper case and lower case letters, respectively. The left 
most column is genome position, the second column the reference 
base, and the third column depth of coverage (nu MBer of reads). The 
upper panel shows two SNPs called by Pipeline A, but not by Pipeline 
B. In both cases, Pipeline B did not call the SNP because it was only 
observed in one reading direction. While this is an algorithmic choice, 
it seems a prudent one in the setting of forensics where caution and 
conservatism should be the general rule for a quantitative analysis.

Table 5 summarizes specific alignment results from three threat 
agents and our calibrant organism Bg using the Pipeline A analysis 
for comparison to our non-alignment triaging (z-value) analysis. 
Two Burkholderia species had statistically high z-values outside the 
expected range (of z-value <2.0), as compared to Bg and Y. pestis. 
These differences can be explained by data in the third column in the 
table, which shows total fraction of non-reference base calls for reads 

BFAST Algorithm

SAMTOOLS

SNP Calling

- Index reference genome using mask and hash for speed
- Match reads to reference (candidate alignments)
- Perform local alignment with gaps (Smith Waterman)
- Filter for best alignments (randomly assign tied scores)
- Convert output to SAM format

- Sort mapped reads according to genome positions
- mPileUP (accumulate base calls at each reference site)

- Determine fraction f of identical non-reference base calls
- SNP: f > 0.5 and confirmed in forward and reverse reads

Figure 4: Description of the Pipeline A alignment algorithm used to SNP 
calling and population diversity measures. BFAST and SAMTOOLS are 
available in the public doman. The SNP calling required a non-reference 
matching base fraction at a genome position exceeding 0.5 (i.e., a new 
consensus) and confirmation of the base call at that position in 1 or more 
forward reads and reverse reads.
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Figure 5: Distribution of non-reference matching bases per genome position 
after reads alignment by Pipeline A. The dotted line represents the fraction 
of local coverage that is any non-reference base, the solid black line is the 
maximum of the identical non-reference bases that have at least one read in 
both the forward and reverse directions, and the red line represents those 
variants meeting the criteria of the black curve, but further confirmed in 3 
replicate, statistical identical, read sets. The continuum of the fractions is 
indicative of population structure and criteria of SNP calling threshold, as 
those variants exceeding a fraction of 0.5 (the consensus).

SNP CALLING DISCREPANCIES BETWEEN PROCESSING PIPELINES

Forward reads only
 (SNPs not called by Pipeline B)

Many local polymorphisms
 (SNPs called by Pipeline B but not Pipeline A)

Figure 6: Analysis of SNP calling discrepancies between processing 
Pipelines A and B. The graphic shows mPileUP output, which is described in 
the text. Discrepancies can be attributed to an algorithmic limitation (Pipeline 
A) and stringency criterion (Pipeline B). These data suggest use of the most 
conservative criteria for SNP calling should be used for comparisons of two 
bacterial samples for forensic applications. Pipeline B can be improved to 
further reduce any spurious SNP calls by requiring all base calls exceed a 
specific quality score.

Representative Mapping Statistics: 10,000,000 Illumina reads, 100bp
*Calibrant

Table 5: Mapping statistics for three threat agents and our Bgcalibrant. Non-
alignment Z values are included for comparison. The higher Z values for 
Bukholderia is reflective of the higher fraction of non-reference-matching base calls 
in these samples and is indicative of a greater population diversity compared to Bg.  
Bukholderia had much higher SNP calls (Pipeline B) compared to the Y. pestis. The 
larger unmapped base counts along the reference genomes (column 5) for Yp and 
Bm are due to insertion elements that are highly mobile within these genomes and 
promote re-arrangements. The BFAST default parameters for assigning candidate 
locations to reads when there is a high multiplicity of candidate alignments across 
the reference genome resulted in these gaps.

Organism Z-score
Non-mapping

Non-Reference
Base Fraction
(mapped reads)

Mapped 
Read 
Fraction

Unmapped 
Reference 
Bases

SNP 
calls

B.globigii* 0.02 0.018 0.99 0 0

Y.pesis 0.12 0.019 0.93 134,750 47
B.mallei 3.06 0.025 0.94 166,439 431
B.pseudomallei 2.87 0.027 0.98 859 365
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successfully aligned to the reference genome. For the calibrant Bg, the 
value of 0.018 reflects both the co MBination of base calling and indel 
error rate of sequencing process, as well as the population structure. The 
value is slight higher for Y. pestis, which had a slightly high z-value than 
Bg. For the Burkholderia, the non-matching fraction is ~30% higher 
than Bg and this additional biological “noise” is reflected in the higher 
z-values. While our hypothesis test is sensitive to this population’s 
structure, it indicates something very useful about the analyzed sample 
and the importance of calibrants to account for the wide diversity of 
potential population structure, accumulation of sequence artifacts and 
sequence-dependence of sequencer error processes.

Another interesting aspect of the alignment/mapping pipeline 
analysis is displayed in columns four and five. While the Burkholderia 
had greater genetic diversity than Y. pestis and Bg samples, Y. pestis and 
B. mallei samples had lower fractions of successfully mapped reads, 
and a high fraction ~3% of unmapped based positions (gaps) in the 
reference genome. Despite this high fraction of the reference genome 
being unmapped, the Y. pestis n-mer signature coverage was >99.99%. 
This can be explained by the fact the both the Y. pestis and B. mallei 
genomes are unusually rich in identical insertion sequences which are 
mobile within the genome and promote genomic re-arrangements. A 
deeper analysis of the gaps in the reference revealed they exist due to 
algorithmic choices in the BFAST tool for aligning reads that have a 
large nu MBer of candidate locations.

Forensic detection of bacterial population variants

The next level of analysis in forensic comparison of bacterial samples 
is detection and comparative analysis of non-consensus population 
variants within samples. This is akin to analysis performed in the 
Amerithrax case, where population variants with a specific phenotype 
were targeted in field analysis for their forensic value. However, we 
expand on the SNP analysis above to include targeting of specific 
variants in populations that have local fractions below consensus (<0.5 
fraction of the total coverage depth). As shown in Figure 5, the non-
reference matching bases, that also match one another in forward 
and reverse directions, form a continuum. Detecting specific variants 
from a targeted set must account for background of population 
variants in a sample that could match targets by chance. A framework 
for this analysis is constructs of Receiver Operator Characteristic 
(ROC) curves, which plot probability of detection a target against the 
probability of falsely detecting the target from the background “noise”. 
The ROC curve is a form of parametric curve: for each threshold values 
(in our case non-consensus fraction) that a variant must exceed to be 
“detected”, we compute the probability of detecting the target variant 
when it is actually in the sample, and the probability of accidentally 
detecting it when it is not introduced explicitly into the sample 
(accidental detection). As the detection threshold is swept across the 
range (0.0 ->1.0), the probabilities trace out the ROC curve.

The potential that a forensically targeted variant could randomly 
appear during growth, coupled with the high sensitivity of NGS to 
detecting minor variants, affirms the need for conservatism and caution 
in the use of NGS for comparative population analysis from culture.

Forensic comparison of total genomic content–population 
sequence analysis

Comparative analysis of two samples for identity of total genomic 
content is of interest, such as bioinformatics analysis of sequence 
information of two sample vials to determine extent of matching 
compositions (direct theft). Two considerations drive the algorithmic 

approach: multiple, unknown contaminating organism constituents 
can exist in the samples, and the impacts of sequencing noise need 
to be minimized. Further, from the perspective of communicating an 
algorithmic result, a further constraint of a threshold for detection of 
difference is always implicit for a particular chosen depth of sequencing 
for the analysis. Our analysis includes of matching n-mer content and, 
but also characterization of non-matching content, the extent to which 
this content is or is not consistent with the expected sequencing noise. 
We define a metric, the scalar product distance, s, as,

1 2

1 2

. {1 ;= = ≥i
v vs v m t

v v 0 otherwise;	

where v1 and v2 are vectors of dimension 4n formed by the complete set 
of all n-mers of length n, for read set 1 and read set 2 in the comparison 
analysis, respectively; m is the multiplicity of the n-mer, i.e., the nu 
MBer of times the n-mer is observed in the data set, and t is a threshold 
count that determines whether a particular n-mer has been detected. 
The distance s is 0.0 when there is no overlap in genomic content and 
1.0, when n-mer content vectors are identical. The introduction of 
the detection threshold, t, enables us to optimally reduce the impact 
of noise on our comparison of total genomic content based on n-mer 
composition of the two samples.

The importance of the threshold concept is illustrated in Figure 
7, which shows read n-mer count distributions for Bg reads for those 
matching reference genome signature n-mers (signal) and those that 
do not match (sequencing noise and population variants). The data in 
Panel A is the multiplicity, m, per n-mer, for the particular sequencing 
depth. As seen in Panel B, as the threshold for detecting an n-mer is 
increased from 0, noise is reduced at some expense of signal, but a 
minimum is attained for s for v1 derived from read data and v2 derived 
from the reference genome. This is the threshold value, t, we use to 
perform reference-free comparisons between sequencer read sets 
for the chosen depth of sequencing. The threshold t is related to the 
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Figure 7: A) Distributions showing the probability of observing a specific 
multiplicity per signature n-mer across a reference genome and probability 
of observing a non-signature n-mer when processing NGS reads. B) Curve 
showing that the scalar product measure (defined in the text) has a minimum 
when a specific genomic content detection threshold is used.
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“threshold-based value.” The nu MBer of occurrences of an n-mer (the 
multiplicity), which is dependent on the nu MBer of genomes in the 
sample and the depth of sequencing. Panel B, Figure 7 illustrates the 
differences in multiplicity as compared to length of n-mer. The ratio 
of matching reads versus amount of non-matching reads approaches 
a minimum. User selection of n-mers to the right of the minimum will 
result incorporation of noise, artifacts and errors into the matching 
processes and result in misleading acceptance of noise as important 
sequence data for sample characterization. Selection of n-mers to 
the right of the minimum will increase accuracy, but at the same 
time reduce ability to characterize populations. This plot justifies the 
rationale to use a threshold-based value of 0.2 – 0.3 because this range 
incorporates the lowest amount of noise while capturing the greatest 
amount of unique reads important for accurate genome identification.”

Our read-set to read-set comparison approach asks the question: 
are differences in the metric observed between read sets comparable 
to those observed when a single read set is compared to multiple 
statistically independent realizations of itself? Here, fluctuations in 
a metric reflect statistical sampling coupled with end-to-end sample 
processing effects for the conditions of the particular run. To measure 
these fluctuations, we calculate the distribution of metrics for selfversus-
self comparisons. This was performed by dividing an ultra deep Bg read 
set into 20 individual data sets, 4,500,000 reads long (~100× genome 
coverage) and then computing s, and the numerator of s, which is 
the probability of self-matching an n-mer for all 190 possible unique 
pair-wise co MBinations of read sets. The same was performed for a 
second Bg sample executed within the same run. These point pairs are 
shown as the red dots in the scatterplot in Figure 8. We define an ellipse 
encompassing the self-versus-self data points and use it as a model to 
represent the data. The ellipse is defined such that the self-versus-self 
points have a 5% probability, p, of falling outside the ellipse. We can 
now compute pair-wise comparisons between Bg and another read set 
from another sample and count the nu MBer of data points, n, that fall 
outside of the ellipse; then compute the probability Pr (p, n) that the 
observed nu MBer or more could have occurred from a self-versus-self 
comparative analysis by chance.

 

Here p=0.05, and K is the nu MBer of trials (pair-wise comparisons). 
Since the Bg read sets were identical in composition after removal of 
sequence artifacts, computing cross-wise paired comparisons between 
the two read sets from the run should yield a Pr value that is not 
statistically significant. The results of the comparisons are shown as the 
blue dots in Figure 8. Here n=13, K=190, and Pr (p, n)=0.07, which is 
not significant. To test the sensitivity of the approach to contamination, 
we introduced 20 copies of a segment of extraneous DNA 5000 bases 
long (equivalent of a very small plasmid) in the Bg run data, which 
constitutes as sample with ~0.02% contamination. We performed 10 
comparative read set analyses against the uncontaminated Bg and these 
results are shown in Figure 9. In this case, 50% of points fell outside the 
model, giving a statistically significant Pr value of 0.001. 

Summary
The main cause why direct population sequencing analysis has 

not been widely adopted is the paucity of accurate, effective, easy-
to-use bioinformatics tools that guide interpretation of major and 
minor genome content [21]. We examined the application of NGS 
bioinformatics tools for forensic analyses of bacterial samples. We 
evaluated them against specially prepared samples and used these 
results to elucidate the benefits, caveats, and potential pitfalls of direct-
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Figure 8: Plot showing scatter distribution of the scalar product metrics 
versus its numerator (probability of detecting self n-mer) for genome-
reference-free comparisons of identical (statistically) read sets from the 
same sample (red) and between two identical samples of the same organism 
prepared separately, but sequenced in the same run (blue). The model in 
green is derived from scatter of self-versus-self points and is used to compute 
a p-value for observing measured fraction of test points outside the ellipse. 
In this case, the separately prepared, but identical organism sample gave 
an insignificant p-value, indicated that the samples are consistent with being 
identical in genomic content.
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Contaminant = 3/10, p = 0.001*
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Figure 9: Plot showing the model from Figure 8 and data points from a 
artificial sample of Bg that is contaminated with 20 copies of an extraneous 
genome fragment 5000 bases long, corresponding to a 0.0002 fraction 
contamination. The p-value for detecting 5 out 10 trials outside the ellipse 
is ~ 0.001, which means the observation was unlikely to have occurred by 
chance, and thus the genomic content of the two samples is NOT identical.

sequence-analysis technologies. We emphasized the importance of 
quantitative approaches and statistical analysis tools for hypothesis 
testing as the basis for forensic analysis of NGS bacterial genomic data. 
As with the case of forensic analysis of human DNA for identification 
[22,23], distinguishing sequence observations from noise and random 
chance due to frequencies in a population is the first critical step in 
the use of such data in courts of law. This task is particularly daunting 
in the forensic application of direct-NGS for metagenomic samples, 
as sequencer output depends not only on reagent lots and sequence-
dependent biases in the sample processing, generation of artifacts and 
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base calling output, as well as “biological noise”, which is the unknown 
population structure in a given sample, and its detailed dependence on 
the culturing conditions [24,25]. These factors all highlight the need for 
high levels of standardization in bacterial sample preparation and end-
to-end sample preparation in the NGS analysis of forensic samples.

We evaluated a calibrant as a means to capture the noise impacts on 
detection results. Our approach was successfully applied in the context 
of triaging for constituent organisms in a sample. The calibration 
procedure provided a basis for a hypothesis test for detection, and the 
approach enables selection of only a small subset of reference genomes 
to be use in a subsequent step for detailed, computationally intensive 
alignment-based analysis. This triaging was incorporated into a 
software tool called statMap, which triages on a time scale ~2 hours per 
0.5 GB of sequencing data analyzed against the entire Genbank database 
of reference genomes. Our work highlights the value of calibration 
(different noise characteristics were observed in separate NGS runs on 
identical samples), but also effects of bacterial population structure on 
such analyses, and the potential need for multiple calibrant organisms 
in an analysis. Our methodology also addressed the fact that organisms 
in forensic samples will never be exact matches to reference database 
genomes. This is especially important for novel organisms, where the 
use of a contextual analysis, when genomic distances are placed in 
the context of typical distances among known bacterial species, such 
as all Y. pestis strains, can be useful in the characterization of a novel 
organism constituent.

For alignment-based comparisons of organisms, we illustrated 
potential impacts of population structure and algorithm parameters 
on SNP calling with respect to a reference genome. We compared 
NGS processing pipelines based on off-the-shelf tools that make 
different speed-versus-accuracy tradeoffs to reveal discrepancies in 
results and elucidate their origins. Our observation, in our Pipeline 
B analysis, of detected variants from a single colony extract, strongly 
suggests uniquely defining SNPs as the consensus variants, i.e., the 
variant that exceeds 50% of the base calls at a given genome position 
following alignment. The potential that this continuum of variation 
and the nu MBer of variants exceeding this threshold will depend on 
specific growth conditions, suggesting a need to develop standards for 
growth prior to forensic analysis, even at the coarse SNP-calling level 
of analysis of a bacterial population [26]. Clearly, avoiding the growth 
requirement altogether is the most desirable scenario.

We also investigated an approach to minor variant detection in the 
presence of the background “noise” of population structure in a sample. 
We applied the concept of the ROC curve to encode the relationship 
between sensitivity of detecting variants against the noise background 
and the associated false alarm rate (or probability of observing the nu 
MBer of detected variants or more by chance). To illustrate the concept, 
we diluted one sample of Bg into a different Bg strain at ratios of 1:3 and 
1:10. In both cases, we could detect all the variants at approximately the 
fractions expected; however, one variant was detected in both samples. 
As none of the other variants were detected in this control, we conclude 
that contamination was unlikely, and that the local variant observed is 
either a minor contributor to the Bg stock parent population structure, 
or, was generated by mutations during colony growth. In either case, 
cautious analysis of control samples in the use of NGS analysis for 
minor variant detection is required and application of hypothesis tests 
(i.e., ROC curve analysis) is recommended when quoting detection 
results using direct NGS analysis. Alternatively, estimating population 
constituent genomes through hyper-dilution and consensus sequencing 
of each colony reduces the noise, but is prohibitively labor intensive 
and costly.

Finally, we developed a novel approach for analysis for identity of 
total genomic content by direct comparative analysis of NGS reads for 
two samples. Critical to such analyses is the mitigation of base-calling 
noise and the fine population structure on the measurement. We 
devised a metric that mitigates noise contribution with the expense of a 
copy nu MBer requirement for detecting a sample constituent, whereby 
applying a threshold for detecting all n-mer words in samples. The use 
of this metric enables development of a model based on self-versus-self 
comparisons of NGS read sets for each sample. The analysis provides 
a hypothesis test p-value that can be used to exclude two samples as 
coming from the same source, and does so without use of a reference 
genome (the test is based purely on n-mer composition) and is valid for 
total unknowns. We believe such a test has the potential for field use in 
investigations, following future demonstration of its efficacy in larger 
data sets and in blind panel analyses.

Herein, we both developed and critiqued candidate algorithmic 
approaches to illuminate benefits, caveats and pitfalls of NGS use in 
four specific bacterial forensics contexts:

•	 Forensic characterization of bacterial constituents 

•	 Forensic comparison of consensus sequences of bacteria 

•	 Forensic detection of bacterial population variants 

•	 Forensic comparison of total genomic content 

Calibrant-based analysis demonstrates not only dependence of 
alignment and SNP-calling results on algorithmic parameters, but the 
continuum of population variants. The population structure within 
a single colony may arise from multiple factors, such as growth time 
and conditions. While there are a nu MBer of factors on how culture 
impacts population diversity in a sample, it is conceivable that the nu 
MBer of SNPs called based on a fraction exceeding 0.5 could indeed 
depend on such factors, making standardization of protocols a high 
priority for any comparative analysis requiring growth in culture. It 
would be most advantageous to avoid a culturing step and apply direct 
analysis by NGS, use our calibrant tool, characterize sample genome 
profile and assess attribution.

As a final note, our research illustrates utility robustness of this 
potentially near term, field-able approach for genome-reference-
free forensic comparison. We have demonstrated that mixtures can 
be directly interrogated and with appropriate sequence information 
processing result in accurate identity of genomic content of samples. 
Hence, warranting our methods as an NGS-based rapid exclusion tool 
to support criminal investigation.
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