Prediction of 3D Structure of Paralytic Insecticidal Toxin (ITX-1) of Tegenaria agrestis (Hobo Spider)

A.G.Ingale* and N.J.Chikhale

1Department of Biotechnology, School of Life Sciences, North Maharashtra University, Jalgaon, (Maharashtra) India
2Department of Biotechnology, Sant Gadgebaba Amravati University, Amravati (Maharashtra) India

Abstract

Paralytic insecticidal toxin (ITX-1) (Tegenaria agrestis) involved multiple antigenic components to direct and empower the immune system to protect the host from infection. Spider peptide toxins with nanomolar affinities for their receptors are promising pharmaceutical tools for understanding the physiological role of ion channels and as leads for the development of novel therapeutic agents and strategies for ion channel-related diseases. A 3-dimensional model (3D) was developed for the Paralytic insecticidal toxin of the (ITX-1) of Tegenaria agrestis (Hobo spider). A homology modeling method was used for the prediction of the structure. For the modeling, a template protein was obtained by mGenTHERADER, namely the high-resolution X-ray crystallography structure of a FERREDOXIN (1FCA) of Clostridium acidurici. By comparing the template protein a rough model was constructed for the target protein using MODELLER, a program for comparative modelling. The model was validated using protein structure checking tools such as PROCHECK and WHAT IF for reliability. The information thus discussed provides insight to the molecular understanding of Paralytic insecticidal toxin (Tegenaria agrestis). The predicted 3-D model may be further used in characterizing the protein in wet laboratory.

Keywords: Structure prediction; ITX-1; Tegenaria agrestis

Introduction

The hobo spider, Tegenaria agrestis, is a member of the family of spiders known as the Agelenidae or funnel web weavers. The first record of Tegenaria agrestis Walkenaer in the United States was in Seattle, Washington in 1930 [1,2]. European distribution is widespread from Europe to central Asia [3]. The current range of T. agrestis, originally named the aggressive house spider, includes Washington, Oregon and Idaho [4] as well as Colorado and southern British Columbia [5]. Although no medical concerns are associated with T. agrestis in Europe [6] conjectures have been made in Washington, Oregon and Idaho, since the late 1980s, due the suspicion that its bite causes necrotic tissue lesions. Approximately 500 species of funnel web weavers occur worldwide; about 300 of these are found in North America, and about 100 species are native to Europe. The hobo spider (Tegenaria agrestis) is a member of the genus of spiders known colloquially as funnel web spiders. In the United States, the hobo spider has been considered to be a dangerous species based on venom of Hololea curta [10]. Acylpolymamines represent the vast majority of organic components from the spider venom. Acylpolymamine analogues have proven to suppress hippocampal epileptic discharges. Acylpolymamines and peptides from spider venoms represent an interesting source of molecules for the design of novel pharmaceutical drugs [11].

Comparative modeling or homology modeling (HM) is becoming a useful technique in the field of bioinformatics because the knowledge of the three-dimensional structure of a protein would be an invaluable aid to understand the details of a particular protein. However, a solved structure for Paralytic insecticidal toxin (Tegenaria agrestis) is not available at the protein data bank (PDB).

Therefore, we created a model of Paralytic insecticidal toxin (Tegenaria agrestis) using the X-ray structure of a FERREDOXIN (1FCA) of Clostridium acidurici as template with MODELLER (a comparative modeling program) [12]. The model was validated using protein structure checking tools such as PROCHECK, WHAT IF and ProSA for reliability.

Materials and Methods

Retrieval of target sequence

The amino acid sequence of the Paralytic insecticidal toxin...
(ITX-1) of *Tegenaria agrestis* was obtained from the sequence database of UniProtKB/Swiss-prot (http://www.expasy.org/uniprot) database release 54.0. ID gi|2920713|emb|CAA11839.1[13]. It was ascertained that the three-dimensional structure of the protein was not available in Protein Data Bank (http://www.rcsb.org/pdb/home/home.do), hence the present exercise of developing the 3D model of the Paralytic insecticidal toxin (ITX-1) of *Tegenaria agrestis* was undertaken. The protein is 68 amino acids in length.

Template searching

An attempt was made to find a suitable template protein for the modeling of the target protein. The template protein was searched through mGenTHREADER, which is an online tool for searching similar sequences, based on sequence and structure-wise similarity [14]. From the homology searching, two templates were selected. X-ray crystallography structure of the FERREDOXIN (1FCA) of *Clostridium acidurici* were selected as template proteins.

Sequence alignment

Amino acid sequence alignment of target and template proteins was derived using the Swiss-PdbViewer (http://www.expasy.ch/spdbv/). Default parameters were applied and the aligned sequences were inspected and adjusted manually to minimize the number of gaps and insertions.

Homology modeling and structure refinement

A rough 3-D model was constructed from the sequence alignment between Paralytic insecticidal toxin (ITX-1) and the template proteins using MODELLER 8v0 (http://salilab.org/modeller/) with parameters of energy minimization value. The model was further checked with WHAT IF and Ramachandran plot at PROCHECK [15,16]. Accessible surface area prediction using VADAR was performed [17]. The rough model constructed was solvated and subjected to constraint energy minimization with a harmonic constraint of 100 kJ/mol/Å² model constructed was solvated and subjected to constraint energy minimization value. The model was further checked with WHAT IF. The Ramachandran plot of phi/psi distribution in the structure was investigated by the calculation of PROCHECK Quality Control value. The Ramachandran plot of phi/psi distribution in the model is developed using PROCHECK for checking non-GLY residues at the disallowed regions. Standard bond lengths and bond angles of the model were determined using WHAT IF.

Results and Discussion

The Paralytic insecticidal toxin (ITX1) protein sequence is 68 residues long as: MKLQLMICLV LLPCFFCEPD EICRARMTHK EFNYKSNVCN GCGDQVAACE AECFRNDVYT ACHEAQKG. By using the bioinformatics tools, a three-dimensional structure model of Paralytic insecticidal toxin of *Tegenaria agrestis*, was constructed by HM. The results are presented here. Many peptide toxins from spider venoms share structural features, amino acid composition and consensus sequences that allow them to interact with related classes of cellular receptors. They have become increasingly useful agents for the study of voltage-sensitive and ligand-gated ion channels and the discrimination of their cellular subtypes. The three-dimensional (3D) structure details of proteins are of major importance in providing insights into their molecular functions. Further analysis of 3D structures will help in the identification of binding sites and may lead to the designing of new drugs.

The protein sequence of the Paralytic insecticidal toxin (ITX1) protein of *Tegenaria agrestis* (Hobo spider) was obtained from the Swissprot sequence database. Multiple alignment of the primary structure of the target protein highlights the degree of sequence...
conservation and high sequence similarity. Homology modeling is only a viable technique because it produces models that can be used for further research. Homology modeling helps in predicting the 3-D structure of a macromolecule with unknown structure (target) by comparing it with a known template from another, structurally highly similar, macromolecule. The structure of the target protein is structurally similar with the template if both the target and template sequences are similar. In general, 30% sequence homology is required for generating useful models. Here, the sequence alignment score was 44 as calculated by ClustalW (http://www.ebi.ac.uk/cgi-bin/clustalw).

In our study, based on the results obtained from mGenTHREADER program, the X-ray structure of the FERREDOXIN (IFCA) of Clostridium acidurici were selected as templates. MODELLER was used for building the model and global energy minimization. The sequence was obtained from sequence database and was submitted to blast search. After the BLAST analysis, PROCHECK was used to validate the model. The total energy values of the predicted 3-D model were calculated as 98.0% of Ramachandran plot (Figure 1A) value in 30 and 40 steepest descents and conjugate gradient, respectively. Based on analysis on 118 residues of resolution of at least 20 Å and R factor no greater than 30%, a good quality model would be expected to have over 90% in the most favoured regions.

The refined model was analyzed by different protein analysis programs including PROCHECK for the evaluation of the Ramachandran plot quality, and WHATIF for the calculation of packing quality. This structure was found to be satisfactory based on the above results. The predicted 3-D model of the Paralytic insecticidal toxin (ITX1) of Tegenaria agrestis will be very useful in wet laboratory while studying the real structure of the protein.

Conclusions

The structure of Paralytic insecticidal toxin (ITX1) of Tegenaria agrestis is important for establishing its molecular function. However, a three dimensional structure is not available as yet at PDB. We developed a homology model for Paralytic insecticidal toxin (ITX1) Tegenaria agrestis using MODELLER. The model was further analyzed for residue solvent accessibility in establishing its molecular function. Solvent accessible surface area (ASA) analysis of the Paralytic insecticidal toxin (ITX1) model showed that known key residues playing important role in active site for ligand binding and metal ion binding are buried and not accessible to solvent. The analysis highlights the importance of solvent exposed catalytic residues in molecular function.

Acknowledgements

We thank scientist who sequence the ITX of Tegenaria agrestis and deposited in publicly available databases. We also thank scientist who developed bioinformatics tool used in this study.

References