alexa β-arrestin1-biased β1-adrenergic Receptor Signaling-mediated MicroRNA Regulatory Network: A New Player In Cardiac Protection
ISSN: 2155-9880

Journal of Clinical & Experimental Cardiology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

4th International Conference on Clinical & Experimental Cardiology
April 14-16, 2014 Hilton San Antonio Airport, TX, USA

Il-man Kim
ScientificTracks Abstracts: J Clin Exp Cardiolog
DOI: 10.4172/2155-9880.S1.019
Abstract
MicroRNAs (miRs) are small, non-coding RNAs that function to post-transcriptionally regulate gene expression. First transcribed as long primary miR transcripts (pri-miRs), they are enzymatically processed in the nucleus by Drosha into hairpin intermediate miRs (pre-miRs) and further processed in the cytoplasm by Dicer into mature miRs where they regulate cellular processes following activation by a variety of signals such as those stimulated by β-adrenergic receptors (βARs). Initially discovered to desensitize βAR signaling, β-arrestins are now appreciated to transduce multiple effector pathways independent of G protein-mediated second messenger accumulation, a concept known as biased signaling. We previously showed that the β-arrestin-biased β-blocker carvedilol activates cellular pathways in the heart. Our recent data demonstrated in human cells and mouse hearts that carvedilolup regulates a subset of mature and pre-miRs but not their pri-miRs in β1AR-, G protein-coupled receptor kinase 5/6- and β-arrestin1-dependent manner. Mechanistically, β-arrestin1 regulates miR processing by forming a nuclear complex with hnRNPA1 and Drosha on pri-miRs. Loss- and gain-of-function approaches in cardiomyocytes (CMs) and in vivo mouse hearts also uncovered that β-arrestin1-regulated miRs increased CM survival by repressing apoptotic genes. Our findings indicate a novel function for β1AR-mediated β-arrestin1 signaling activated by carvedilol in miR biogenesis, which may be linked, in part, to its mechanism for cell survival. These results also suggest that miR-target pairs regulated by β-arrestin1 may exert cardio protective effects
Biography
Il-man Kim is an Assistant Professor at Georgia Regents University. He completed his Ph.D. at the University of Illinois and postdoctoral training at Duke University. He is working on multi-disciplinary research projects related to cardiac disease. Particularly he is studying G protein-coupled receptor-mediated signaling pathways. He was selected as a finalist for the American Heart Association (AHA) Katz Basic Research Prize. He has been awarded three AHA grants. He has served on the grant review committee of AHA and NIH as well as Medical Research Council in UK. He has served on the editorial board member of several cardiovascular journals
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords