alexa A New Novelty Detector For Finding Abnormal Beats In ECG Recordings | 9325
ISSN: 0974-7230

Journal of Computer Science & Systems Biology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

International Conference on Integrative Biology Summit

Fayyaz ul Amir Afsar Minhas
ScientificTracks Abstracts: J Comput Sci Syst Biol
DOI: 10.4172/0974-7230.S1.002
Abstract
Electrocardiogram (ECG) recordings of two persons with the same type of abnormality can differ significantly from one another due to differences in age, gender, physical condition, emotional state, genetics, family history and the underlying cause of a cardiac abnormality. This variability is one of the major causes of inaccurate predictions from an automated detector of abnormal beats as most of these detectors do not take this variability into account. Additionally, most existing approaches require both normal and abnormal beats as examples during training of their machine learning method. The annotation of abnormal beats is a difficult task as, usually, only a small fraction of cardiac beats in a Holter ECG recording is abnormal. This paper presents a novel machine learning method (called Quadratic Programming Dissimilarity based Data Descriptor or QPDDD). QPDDD is a one-class classifier (or novelty detector) that requires a small number of only normal beats for training. These beats can either be presented to the system through annotation by a medical expert or they can be selected randomly from the recording when the number of abnormal beats is expected to be very small in comparison to the number of normal beats. Once trained, QPDDD can accurately and efficiently predict whether any input beat from that individual is normal or abnormal. This paper compares the performance of QPDDD with other one-class classifiers using the MIT-BIH Arrhythmia database. An equal error rate (EER) of 90-95% (depending upon the amount of training data) was observed for QPDDD. This clearly indicates the efficacy of the proposed scheme and the potential of its application to related problems in biology and medicine.
Biography
Fayyaz ul Amir Afsar Minhas is currently a Ph.D. student at Colorado State University. He is a recipient of the William J. Fulbright doctoral scholarship. He has worked on the detection of cardiac abnormalities through the analysis of electrocardiogram (ECG) recordings for about 3 years. He has published more than 25 papers in reputed journals and conferences in areas related to applications of machine learning techniques. He is currently using kernel methods for the prediction of interactions between protein molecules.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7