alexa A New Perspective For Analyzing Experimental Tests On Biomaterials
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

9th World Congress on Materials Science and Engineering
June 12-14, 2017 Rome, Italy

Antonina Pirrotta
University of Liverpool, UK
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-067
Abstract
Given the increasing interest for the biomaterials in medical and engineering field, the objective of this talk is the theoretical and experimental analysis of the biomaterials in order to define experimental procedures and mathematical models suitable for their mechanical characterization. The biomaterials exhibit a rheological behavior intermediate between that of purely elastic materials and that of the purely viscous materials and therefore are called viscoelastic ones. In the past the “classical” models as Maxwell and Kelvin-Voigt have been used to capture viscoelastic phenomena. However, these models are not consistent to model the viscoelastic behavior of real materials, since the Maxwell type can capture the relaxation tests only and the Kelvin-Voigt the creep tests. A more realistic description of creep and/or relaxation is given by a power law function with real order exponent. As soon as we assume a power law function for creep, the constitutive law relating deformation and stress is ruled by a Riemann-Liouville fractional integral with order equal to that of the power law. In this regard, recent studies have been stressed that the most suitable model for capturing the viscoelastic behavior is the spring-pot, characterized by a fractional constitutive law. Based on the aforementioned considerations, it is apparent that the need of theoretical as well as experimental development and exploration of materials with novel physical characteristics. For instance, if the giant grass Arundo donax (AD) has to be characterized; then, attention is devoted on searching a proper model for characterizing the behavior of giant reeds. To aim at this, firstly, meticulous experimental tests have been performed in the Laboratory of structural materials of University of Palermo. Further a novel aspect of using an advanced Euler-Bernoulli model to fit experimental data of bending tests will be introduced.
Biography

Antonina Pirrotta has graduated in Civil Engineering from the Palermo University in 1987. She has done her PhD in Structural Engineering in 1996 and as Postdoctoral studies in 1998. In 2000, she became a Researcher, in 2001 Associate Professor and in 2016 Full Professor in the Structural Engineering department at the University of Palermo. She is the author and co-author of about 90 scientific papers dealing with the following fields: stochastic dynamics, active and passive control, stochastic differential calculus. Since 2014, she is a Professor in the Department of Mathematical Sciences, University of Liverpool, UK.

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords