alexa A Quantum-chemical Model Of The Inhibition Of HIV-1 Integrase Action By Molecular Iodine
ISSN: 1948-5964

Journal of Antivirals & Antiretrovirals
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

4th World Congress on Virology
October 06-08, 2014 Hilton San Antonio Airport, TX, USA

Gulnara A Yuldasheva
ScientificTracks Abstracts: J Antivir Antiretrovir
DOI: 10.4172/1948-5964.S1.020
A distinctive feature of the drugs having anti-HIV and anti-viral action (AHD) [1-2] is that they contain not only an iodinepolymer complex, but also lithium and potassium halogenides. Using X-ray data for iodine-α-dextrin complexes and the results of quantum-chemical ab initio RHF/3-21G** level calculations a model of the active complex (AC) of AHD was proposed. It is suggested that the drug active complex contains molecular iodine located inside the α-dextrin helix and coordinated by lithium halogenides and polypeptides. Electronic structure of I2 in this complex differs from its characteristics in complexes with organic ligands or the free I2. In the AC under study the molecular iodine displays the acceptor (donor) properties towards polypeptides (lithium halogenides) [1]. In paper [3] UV- and IR-spectroscopy has been used to study the water-glycine - KI3 - LiCl ?ethanol system that forms AC of AHD. It has been shown that in this system conditions are created for the formation of an iodine complex compound, in which the molecular iodine reveals the acceptor properties towards glycine, and the donor properties towards the LiCl-ethanol complex. A mechanism of AHD anti-HIV action has been proposed. Under the influence of molecular iodine contained in the AC of AHD the structure of HIV DNA is modified: the nucleotides of the viral DNA that are more π-donor-active than peptides form a stable complex with molecular iodine and lithium halogenides [1]. Using UV- and IR-spectroscopy and quantum-chemical DFT/B3PW9 we have confirmed the existence of the molecular iodine complex coordinated by lithium halogenides with nucleotide (nucleotideI2 LiCl) in the system containing the AGA nucleotides triplet and the AC complex of AHD. The interaction of molecular iodine coordinated by lithium halogenides with the viral DNA and the HIV-1 integrase cofactor has been studied by DFT/B3PW9 method. Calculations have shown that complex nucleotideI2 LiCl may prevent the active catalytic fragment of HIV-1 integrase from interacting with the virus DNA. Complex nucleotideI2 LiCl may become the center of another nucleoprotein complex in which molecular iodine interacts both with the virus DNS and the active catalytic domain of HIV-1 integrase Experimental data on the anti-HIV effect of AHD [2] and the results of calculations suggest that the molecular iodine coordinated by lithium halogenides can be regarded as a compound inhibiting the catalytic center of integrase.
image PDF   |   image HTML
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version