alexa A Substrate Independent Approach For Fabrication Of Biocompatible Nano-silver/polymer Antibacterial Coatings
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

3rd International Conference and Exhibition on Materials Science & Engineering
October 06-08, 2014 Hilton San Antonio Airport, USA

Shima Taheri
Accepted Abstracts: Material Sci Eng
DOI: 10.4172/2169-0022.S1.017
The development of silver nanoparticle (AgNPs) as a potent alternative to conventional antibiotics has been extensively investigated over the last decades. However, due to the prominent cytotoxic effect of silver on mammalian cells, there is always strong motivation to develop alternative technology that can compact bacterial infection without affecting the mammalian cells. Capping AgNPs with appropriate functional groups and incorporating them into a polymeric matrix is a feasible alternative to overcome these limitations. AgNPs with different chemical structures (nanocapsules and nanoparticles) and functionalities (polymer, lipid, and starch) were synthesized. To demonstrate application as antibacterial coatings, the stabilized AgNPs were then immobilized onto model surfaces made of a thin layer of allylamine plasma polymerized film. This substrate-independent technique preserves the AgNPs functionalities for a longer period of application time. All fabricated surface coatings exhibited superior antibacterial activity against four important Gram-positive and Gram-negative pathogens. This study further aimed to focus on investigating the effects of AgNPs surface components on delivery of engineered AgNPs from the coatings into the human fibroblast cell as well as bone marrow derived macrophages (BMDM). Most of the surfaces did not affect BMDM function or viability and demonstrated no toxicity toward fibroblast cells, except for lipid coated nanosilvers. Therefore, the chemical structures of nanoparticles significantly affect the coatings? antibacterial, biofilm prevention and biocompatibility capabilities. We believe that such biocompatible nanostructures are of potential interest for various biomedical applications such as smart drug carriers and antibacterial coatings for medical devices and wound dressings.
Shima Taheri is a PhD student from University of South Australia. She qualified in Chemistry in 2004 and then went on to do a Masters Degree in Organic Chemistry followed by MBA-Strategic Management. She has already 12 refereed journal papers, more than 314 citations and H-index=7. Her area of interest is currently surface modification of biomedical devices via deposition of a thin layer of antibacterial protective coating that is fabricated via immobilization of silver nanoparticles onto plasma polymerized films. Furthermore, she is studying bacteria and cell interaction with these surfaces.
image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version