alexa Accumulated Expression Level Of Cytosolic Glutamine Synthetase 1 Gene (OsGS1;1 Or OsGS1;2) Alter Plant Development And The Carbon-nitrogen Metabolic Status In Rice
ISSN: 2329-6836

Natural Products Chemistry & Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

2nd International Conference and Exhibition on Pharmacognosy, Phytochemistry & Natural Products
August 25-27, 2014 DoubleTree by Hilton Beijing, China

Hongmei Cai
ScientificTracks Abstracts: Nat Prod Chem Res
DOI: 10.4172/2329-6836.S1.002
Abstract
Nitrogen is an essential macronutrient required for rice growth and development, and it is a major limiting factor in determining yield productivity. Carbon is crucial for plants to perform their routine and fundamental cellular activities. In addition to their independent utilization, the coordination and optimal functioning of the metabolic pathways for nitrogen and carbon assimilation in plants are critical for determining plant growth and, ultimately, biomass accumulation. In higher plants, glutamine synthetase (GS; EC 6.3.1.2) is a key enzyme for the assimilation of ammonium. In our study, we constructed the OsGS1-overexpressing transformants driven by the CaMV35S promoter and obtained transgenic rice plants with the purpose of improving nitrogen use efficiency. Unexpectedly, the GS1;1-, GS1;2-overexpressing plants displayed unobvious growth phenotype at the seedling stage grown hydroponically under both normal and low nitrogen conditions, and decreases in both grain yield production and total amino acids in seeds grown in field with low nitrogen fertilizer. To identify the reasons for these observations, we systematically analyzed the growth phenotype, carbon-nitrogen metabolic status and gene expression profiles in GS1;1-, GS1;2-overexpressing rice and wildtype plants at different developmental stages grown under different nitrogen levels. Our results revealed that the GS1;1-, GS1;2-overexpressing plants exhibited a poor plant growth phenotype and yield and decreased carbon/nitrogen ratio in the stem caused by the accumulation of nitrogen in the stem. In addition, the leaf SPAD value and photosynthetic parameters, soluble proteins and carbohydrates varied greatly in the GS1;1-, GS1;2-overexpressing plants. Furthermore, metabolite profile and gene expression analysis demonstrated significant changes in individual sugars, organic acids and free amino acids, and gene expression patterns in GS1;1-, GS1;2-overexpressing plants, which also indicated the distinct roles that these two GS1 genes played in rice nitrogen metabolism, particularly when sufficient nitrogen was applied in the environment. Thus, the unbalanced carbon-nitrogen metabolic status and poor ability of nitrogen transportation from stem to leaf in GS1;1-, GS1;2-overexpressing plants may explain the poor growth and yield.
Biography
Hongmei Cai obtained her PhD in 2009 from Huazhong Agricultural University. Now she is an Associate Professor and Master supervisor in the College of Resources and Environment, Huazhong Agricultural University. Her current research interests involve the studies on plant nutrient physiology, biochemistry and molecular biology. She has published more than 20 papers in reputed Chinese and international journals and serving as an editorial board member of Trends in Soil Science and Plant Nutrition.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords