alexa Altered UBIAD1 Prenyltransferase Function In Schnyder Corneal Dystrophy Affects Cholesterol Metabolism And Mitochondrial Function
ISSN: 1747-0862

Journal of Molecular and Genetic Medicine
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

9th International Conference on Genomics & Pharmacogenomics
June 15-16, 2017 London, UK

Michael L Nickerson
National Cancer Institute, USA
Keynote: J Mol Genet Med
DOI: 10.4172/1747-0862-C1-014
Schnyder corneal dystrophy (SCD) is an autosomal dominant disease characterized by deposition of cholesterol in the cornea, progressive opacification, and loss of visual acuity. Germline UBIAD1 variants introduce missense mutations in over 50 SCD families, including four large families from Finland who share a likely founder mutation. UBIAD1 was recently shown to catalyze synthesis of two mitochondrial electron carriers, menaquinone-4 (MK-4) and coenzyme Q10/ ubiquinone (CoQ10). MK-4 is the predominant active form of vitamin K and an important cofactor in bone metabolism and blood clotting. We show SCD-altered UBIAD1 results in reduced MK-4 synthesis and molecular models indicate mutations disrupt active site residues and transmembrane helices. Yeast two-hybrid screening, co-immunoprecipitation, and confocal microscopy show a physical interaction between UBIAD1 and the cholesterol synthesis and storage enzymes HMGCR and SOAT1. Molecular models indicate cholesterol and geranylgeranyl diphosphate, a substrate for MK-4 synthesis, binding the same substrate binding cleft and likely compete for occupancy of UBIAD1. Vitamin K was originally identified by depletion of dietary cholesterol in chickens, which co-depleted vitamin K resulting in hemorrhages and uncontrolled bleeding. Our data suggests a first physiologic role for endogenously produced vitamin K in maintaining cornea health and visual acuity, in addition to its role in blood clotting. The data indicates that the synthesis of vitamin K, CoQ10 and cholesterol may be tightly linked with implications for vision, mitochondria function, cardiovascular health and cancer.

Michael L Nickerson has completed his PhD in Molecular Medicine at George Washington University. He has made significant contributions to disease gene identification using positional cloning, including an altered Birt-Hogg-Dubé gene in chromophobe RCC, fumarate hydratase in papillary RCC, the dead-end gene in testicular cancer, and the UBIAD1 gene in Schnyder corneal dystrophy. More recently, he has sequenced urologic tumor genomes and identified alterations in TET2 in prostate cancer and the BRCA pathway in bladder and kidney cancer, which have been translated to a clinical trial starting in 2016. He is an active participant in Precision Medicine, ClinVar and the TCGA project.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version