alexa Alternative Fuels From Biomass And Power (PBtL) - A Case Study On Process Options, Technical Potentials, Fuel Costs And Ecological Performance
ISSN: 2090-4541

Journal of Fundamentals of Renewable Energy and Applications
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

5th World Bioenergy Congress and Expo
June 29-30, 2017 Madrid, Spain

Ralph-Uwe Dietrich and F G Albrecht
German Aerospace Center, Germany
ScientificTracks Abstracts: J Fundam Renewable Energy Appl
DOI: 10.4172/2090-4541-C1-029
Greenhouse gas emissions in the transport sector shall be reduced to reach globally agreed COP21 goals. One option is to replace fossil based fuels with bio-based alternatives. The technical potential of biofuels made from energy crops (1st generation), biomass and waste wood (2nd generation) typically suffer from the limited technical potential of biomass resources in central Europe. Biofuel output can significantly be increased in the Power & Biomass-to-Liquid (PBtL) concept utilizing renewable electricity in modified BtL plants. The case study presents detailed results on promising process configurations of Fischer-Tropsch PBtL concepts based on different gasifiers and electrolyzers in terms of fuel production potentials, fuel costs and CO2 footprint. Results from the study indicate that the biomass specific fuel output can be quadrupled when utilizing green electricity for hydrogen generation in the PBtL process. The increased fuel output results in lower fuel production costs due to the effects of the economy of scale. Fuel production costs below 1.3 €/l were estimated for a large PBtL plant (225 kt/year) assuming an electricity price of 31.4 €/MWh (average EEXPhelix index of the year 2015). The exergy analysis reveals that the electrolysis and the gasification processes are characterized by the most significant thermodynamic optimization potentials. The PBtL concept is characterized by a lower CO2 footprint, as high carbon conversion rates close to 100% can be achieved by using oxy-fuel technology and recycling the entire CO2 within the system. Hence, largest CO2 emissions arise from harvesting and transportation of the biomass feedstock.

Ralph-Uwe Dietrich leads the research area Alternative Fuels at the Institute of Engineering Thermodynamics at the German Aerospace Center (DLR) in Stuttgart. He is responsible for the research group on techno economic and ecologic evaluation of alternative fuels for aviation and global transport. He received his PhD in Engineering at the Technical University Clausthal in 2013 as a Scientific Coworker at the Clausthaler Umwelttechnik Institute (CUTEC-Institut GmbH). Before that, he got 15 years of project manager experience at different enterprises (SME and Fortune 500) of the process and automation industry.

Email: [email protected]

image PDF   |   image HTML
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version