alexa An Enzymatic-based Process For The Extraction Of Fibers From Diss Stems With For Composites Reinforcement
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

9th World Congress on Materials Science and Engineering
June 12-14, 2017 Rome, Italy

Antonio Zuorro
Sapienza University of Rome, Italy
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-067
Abstract
The diss plant (Ampelodesmos mauritanicus) is an herbaceous perennial plant of the family Gramineae that lives on arid and sandy soils, typical of Mediterranean grassland. The species is widespread in North Africa, in coastal areas of Spain, France, Balkan, Turkey and Italy (in particular, on the arid coastal slopes of the Center-South, in Sicily and in the coastal region of Liguria). Its stems are composed of cellulosic filaments linked by lignin, pectins and hemicellulose. Short fibers can be obtained from the stems by aggressive extraction methods which eliminates the binders. They can be used for paper production. On the other hand, the extraction of long and flexible fibers, useful for the production of reinforcement of composites, is not yet developed and is therefore the subject of this work. Stems were treated with 0.25 M KOH in autoclave at 140ºC for 1 h in order to remove lignin, in the presence of 1.5% of sodium hydrosulfite used as reducer agent. Delignified stems were then treated with different enzymes (pectinases, xylanases and a mixture of them) for pectin and hemicelluloses removal. This treatment was performed at 50ºC, pH 4.5 for 1 h. The effect of enzymatic treatments on the morphological, chemical composition and mechanical properties of diss fibers was investigated and the effectiveness of enzymatic treatments has been evaluated. The results indicate that the tensile properties of fibers were greatly improved when an optimized enzymatic-based process was used to separate the fibers from the stems. This work also showed that enzymes offer an attractive and eco-friendly approach to extract plant fibers.
Biography

Antonio Zuorro is a Professor of Biochemical Engineering Fundamentals and Chemical Engineering for BioMedical Systems in the Department of Chemical Engineering Materials and Environment of Sapienza University of Rome. He received his MS and PhD degrees in Chemical Engineering from Sapienza University of Rome. His research activity has been mainly focused on the development of innovative chemical and biotechnological processes for the recovery of high valueadded compounds from by-products and agro-industrial residues, such as lycopene from tomato waste and phenolic antioxidants from artichoke and bilberries waste, olive pomace and coffee grounds. He also examined the possibility of including the extracts obtained in consumer food products to get new functional foods with high antioxidant activity. In the field of enzyme technology, he studied the use of multi-enzyme systems with enhanced activity for the recovery of lipids and bioactive compounds with high added value from microalgae. He is the author of over 60 scientific publications and several industrial patents, ranging from the biochemical extraction of valuable compounds to the fibers recovery for material applications.

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords