alexa Biomaterials Used In Peritoneal Wound Healing (incisional Hernia Repair Model) And Abdominal Skin Wound Healing | 71656
ISSN: 2157-7552

Journal of Tissue Science & Engineering
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

8th International Conference on Tissue Science and Regenerative Medicine

Satish R L, Aishwarya Kripesh and Vikaesh Moorthy
National University of Singapore, Singapore
University College Cork, Ireland
Posters & Accepted Abstracts: J Tissue Sci Eng
DOI: 10.4172/2157-7552-C1-037
Abstract
Statement of the Problem: Incisional hernia repair often involve exposing the peritoneal cavity, desiccation and risk of infection leading to complications. These complications have spurred research for biological meshes. Biologic grafts are acellular collagen matrices implanted during hernia repair to aid in host tissue incorporation. It is anticipated that they provide the extracellular components necessary for a normal peritoneal and skin healing, reconstruction, mechanical and functional restoration of the abdominal wall. Biological meshes differ based on their source (human or animal), composition (dermal, pericardial or submucosal) and methods of processing (stripping, cross-linking). Cutaneous injuries also have a high prevalence due to rising co-morbidities. The tissue engineering field has also developed in response to the shortcomings related to the tissue replacement: Donor tissue rejection, chronic inflammation and donor tissue shortages. The main aim is to avoid the mentioned issues by creating the biological substitutes capable of replacing the damaged tissue. This increases the need for new and innovative treatments to address postsurgical peritoneal wound healing and abdominal skin healing. Methodology & Theoretical Orientation: Currently, incisional hernia models treated with biomaterials study the effectiveness of biomaterials in improving postoperative peritoneal healing. Substitutes made from skin can harbor the latent viruses and artificial skin grafts may heal with extensive scarring, failing to regenerate structures such as glands, nerves and hair follicles. Thus, new and practical skin scaffold biomaterials are being developed by combining the scaffolds, cells and signals to create the living, physiological, three-dimensional tissue. Findings: Collagen cross-linking increases the strength of the biologic graft. As the density of collagen cross-linking increases there is decreased cellular infiltration (decreased angiogenesis) but increased fibroblast encapsulation and resistance to degradation by the body. Biologic grafts that undergo stripping or collagen cross-linking are less able to stimulate or retain cellular growth factors to promote angiogenesis, reducing graft integration into host tissue. Current biomaterials being explored for skin wound healing include recombinant collagen due to its high tensile strength and biocompatibility, fibrin from pooled plasma due to its occurrence as a natural wound healing matrix, alginate hydrogels which have antibacterial, good water absorptivity and biodegradability, hyaluronic acid due to its non-immunogenic, non-adhesive and pro-angiogenic characteristics, as well as, chitosan which supports wound healing with its film-forming capacity and tissue adhesive and blood coagulation property. Conclusion & Significance: Peritoneal wound and skin wound healing can lead to adverse complications and a financial burden. Primary closure at the time of initial operation or a second look laparotomy with biomaterials may prevent the need for highly morbid staged repairs, enhance cell growth and wound healing while avoiding the associated complications.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7