alexa Can We Delay The Process Of Cartilage Degeneration Associated With Osteoarthritis: Emerging Role Of Autophagy | 17659
ISSN: 2161-0533

Orthopedic & Muscular System: Current Research
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

3rd International Conference and Exhibition on Orthopedics & Rheumatology
July 28-30, 2014 DoubleTree by Hilton Hotel San Francisco Airport, USA

Mohit Kapoor
ScientificTracks Abstracts: Orthop Muscul Syst
DOI: 10.4172/2161-0533.S1.016
Abstract
O steoarthritis (OA) is among the most prevalent chronic human health disorders and the most common form of arthritis. Loss of chondrocyte cellularity within the articular cartilage is one of the critical events that initiate the degradation of articular cartilage during OA. However, it is still uncertain which mechanisms control the fate of chondrocytes within articular cartilage during normal versus OA conditions. Understanding the exact chondrocyte cell death/survival mechanisms could lead to several promising OA therapeutic strategies. Studies by us and others have recently shown that the process of autophagy, a form of programmed cell survival, is impaired during OA and may contribute to decreased chondroprotection, resulting in the degradation of articular cartilage. Our studies show that one of the key central factors that control autophagy mechanisms and ultimately the fate of the chondrocytes within the articular cartilage is the mammalian target of rapamycin (mTOR). mTOR is a serine/threonine protein kinase that regulates cell growth, survival and lifespan of organisms. We have shown that mTOR is overexpressed in human OA cartilage as well as mouse and dog experimental OA. Upregulation of mTOR expression co-relates with increased chondrocyte apoptosis and reduced expression of key autophagy genes during OA. Subsequently, we show for the first time that cartilage-specific ablation of mTOR (cartilage-specific mTOR knockout mice) results in increased autophagy signaling and a significant protection from destabilization of medial meniscus (DMM)-induced OA associated with a significant reduction in the articular cartilage degradation, apoptosis and synovial fibrosis. Furthermore, we show that regulation of Unc like kinase 1 (ULK1)/adenosine monophosphate-activated protein kinase (AMPK) signalling pathway by mTOR is responsible for regulating autophagy signaling and the balance between catabolic and anabolic factors in the articular cartilage. The studies provide a direct evidence of the role of mTOR and its downstream modulation of autophagy in articular cartilage homeostasis. Targeting cellular homeostatic processes, such as autophagy via inhibition of mTOR may be a promising therapeutic strategy to delay cartilage degeneration.
Biography
Mohit Kapoor is an Associate Professor and a Cartilage Biologist. His current appointments include University Health Network (Toronto, Canada) and the University of Montreal (Montreal, Canada). He completed his PhD from the University of Otago New Zealand. His research is directed towards identifying key novel mediators and signaling pathways involved in the pathophysiology of osteoarthritis. His research projects are funded by the Canadian Institute of Health Research (CIHR), Canadian Foundation for Innovation (CFI), Canadian Arthritis Network (CAN), Fonds de Recherche Sante Quebec (FRSQ)-Pfizer and is a recipient of Investigator awards from the Japan College of Rheumatology, ESCEO-AMGEN and FRSQ
image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version