alexa Characteristics And Microstructure Of Tight Gas Reservoir In The Upper Triassic Sichuan Basin, Western China
ISSN:2157-7463

Journal of Petroleum & Environmental Biotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

2nd World Congress on Petroleum and Refinery
June 01-03, 2017 Osaka, Japan

Qi Li
China University of Geosciences, China
ScientificTracks Abstracts: J Pet Environ Biotechnol
DOI: 10.4172/2157-7463-C1-028
Abstract
The western Sichuan Basin is a foreland basin formed in the Late Triassic at the front of the Longmen Mountain in the western Sichuan Province of China. The Upper Triassic Xujiahe Formation in the basin is an ultralow-permeability and low-porosity tight sandstone and shale gas reservoir. Tight gas reservoirs are often defined as gas-bearing sandstones or carbonates having in situ permeabilities to gas less than 0.1 mD. This article offers an integrated approach to describe microstructure characteristics of a tight sandstone and shale gas reservoir. In particular, the primary and secondary porosity of tight gas sandstone is identified and quantified in three dimensions using X-ray Nano-CT imaging and visualization of core material at the pore scale. 3D images allow one to map in detail the pore and grain structure and interconnectivity of primary and secondary porosity. Once the tomographic images are combined with SEM images from a single plane within the cubic data set, the nature of the secondary porosity can be determined and quantified. In situ mineral maps measured on the same polished plane are used to identify different microporous phases contributing to the secondary porosity. Once these data sets are combined, the contribution of individual clay minerals to the microporosity, pore connectivity and petrophysical response can be determined. Insight into the producibility may also be gained. This illustrates the role 3D imaging technology can play in a comprehensive reservoir characterization program for tight gas. Three types of microfractures, intragranular, grainedge and transgranular microfractures, developed in the tight-gas sandstones of the western Sichuan Basin. Microfracture formation reflects tectonism, overpressuring, and diagenetic processes. Tensional microfractures related to overpressure formed in the Middle-Late Cretaceous. The existence of overpressure reduced effective stress, promoting opening-mode fracture growth. The existence of tension fractures can also be used as an indicator of ancient overpressure in a sedimentary basin. Diagenetic fractures formed from the Late Triassic, when the foreland basin of the western Sichuan Basin formed to the Early Cretaceous.
Biography

Qi Li is currently working as a Professor of China University of Geosciences, China. His research is mainly focused on characterization and modeling of fractured reservoir, sequence stratigraphy and marine sciences. He has earned his BS degree in Geology from Chengdu College of Geology in 1992 and obtained PhD in Sedimentology from Chengdu University of Technology in 1999. He has completed his Postdoctoral studies on Petroleum Geology and Marine Science in China University of Geosciences and China University of Ocean from 1999 to 2006.

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords