alexa CO2 Adsorption Equilibria On Calcium Exchanged Bentonite Modified By Mono-, Di- And Triethanolamines
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

9th World Congress on Materials Science and Engineering
June 12-14, 2017 Rome, Italy

Ali E I Elkhalifah and M Azmi Bustam
Al-Neelain University, Sudan
Universiti Teknologi Petronas, Malaysia
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-067
This research work investigates the adsorption characteristics of carbon dioxide on calcium form of bentonite modified by amines at ambient conditions. For this purpose, the native exchangeable cations initially presented in the interlayer space of bentonite were replaced by calcium ions, and then the exchanged bentonite was further treated with protonated mono-, diand tri-ethanolamines via intercalation process. The characteristics of the prepared hybrids were analyzed by XRD, BET and TGA techniques. XRD results revealed that a gradual increase in the basal spacing of bentonite with an increase in the molar mass of amines was observed. Conversely, low surface area values for bentonite were recorded by BET method. However, the thermal analysis (TGA) of the samples showed a shift to lower values in the amount of the physically adsorbed water as well as its desorption temperature. Static adsorption of CO2 on amine-bentonite adsorbents at ambient conditions showed that the molar mass of amine has an inverse effect on the gas adsorption capacity, where bentonite modified by monoethanolamine adsorbed 0.6 mmol/g compared to 0.4 and 0.3 on that one treated with di- and triethanolamines due to the pore opening effect and a consequential higher surface area.

Ali E I Elkhalifah has expertise in clay chemistry, adsorption of gases and environmental engineering. He has worked on clay modification and development of lowcost adsorbents improving the CO2 uptake capacity on the modified clays. He has years of experience in research, teaching and administration both in academia and mission-oriented research.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version