alexa Could Mini-magnetospheres Really Be Used To Protect Spacecraft From Cosmic Rays?
ISSN: 2168-9792

Journal of Aeronautics & Aerospace Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

3rd International Conference and Exhibition on Satellite & Space Missions
May 11-13, 2017 Barcelona, Spain

Ruth Anne Bamford
Rutherford Appleton Laboratory, UK
Posters & Accepted Abstracts: J Aeronaut Aerospace Eng
DOI: 10.4172/2168-9792-C1-017
Abstract
Spacecraft in interplanetary space and the radiation belts are vulnerable to cosmic rays. Solar storms produce large numbers of energetic ions and electrons that can penetrate and disrupt solar panels, electronics and human tissue. Due to their larger mass, the energetic ions are the greater hazard as they are not easily stopped. Thick material cladding around vulnerable parts of the vessel provides diminishing effectiveness at the higher energies. Ideas of electromagnetically deflecting the energetic charged particles fall down due to unrealistically high power requirements needed to create the size of electromagnetic field thought to be needed. Proponents over the years have focused on optimizing the engineering on board the spacecraft. Until recently nobody has re-examined how the particles interact with the magnetic or electric field. It is assumed to be straightforward. However, laboratory experiments and theory have shown that this is not simple. The presence of the diffuse solar wind makes for a far more efficient shield than single particles dynamics would predict. The question then becomes: how does this change the potential for effective active shielding for manned interplanetary spacecraft and/or satellites in the radiation belt? What we find is for a manned mission to Mars of ~20kW of on-board power being redirected to superconducting magnetic coils system weighing approximately 3000 kg including cooling. This would reduce the energetic (>50MeV) particle flux by about 20% during a major solar storm (assuming a severe solar storm flux of ~1010 protons/cm2sec). Additional augmentations, such as adding extra plasma into the bubble, can greatly enhance its effectiveness up to 80 to 90% exclusion overall and extend the range of energies capable of being deflected. These principles will be presented from laboratory and space from the natural magnetic shielding occurring on the Moon.
Biography

Email: ruth.bamford@stfc.ac.uk

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords