alexa Decreased Nuclear Receptor Activity Mediates Down-regulation Of Drug Metabolizing Enzymes In Chronic Kidney Disease Through Epigenetic Modulation | 21530
ISSN: 2161-0495

Journal of Clinical Toxicology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

3rd International Summit on Toxicology & Applied Pharmacology

Bradley L Urquhart
ScientificTracks Abstracts: J Clin Toxicol
DOI: 10.4172/2161-0495.S1.012
Abstract
C hronic kidney disease (CKD) is associated with a decreased expression and activity of several cytochrome P450 enzymes. This may result in drug-associated toxicity in CKD patients taking drugs that are metabolized by affected isozymes. The objective of this study was to determine the mechanism of hepatic drug metabolizing enzyme down-regulation in CKD. Hepatic CYP3A1, CYP3A2 and CYP2C11 mRNA expression were determined in rats with surgically induced CKD. Chromatin Immunoprecipitation (ChIP) was performed to determine nuclear receptor and epigenetic mediated differences in the promoter region of these enzymes. Hepatic CYP3A and CYP2C11 mRNA expression was significantly decreased in CKD rats compared to controls (P<0.05). RNA polymerase II binding to the CYP3A and CYP2C11 promoter regions was decreased in CKD rats (P<0.05). ChIP also revealed a decreased PXR binding to the CYP3A2 promoter in CKD rats (P<0.05). HNF4α binding to the CYP3A and CYP2C11 promoter regions was also decreased compared to controls (P<0.05). The decrease in PXR and HNF4α binding was concurrent with diminished histone 4 acetylation in the CYP3A2 promoter locus for nuclear receptor activation. The uremic toxin indoxyl sulfate also mediates a decrease in CYP3A expression. A novel mechanism of drug metabolizing enzyme regulation in CKD was demonstrated. The results show that decreased CYP3A and CYP2C11 mRNA expression is secondary to decreased PXR and HNF4α binding as a result of histone modulation in CKD. These data may partially explain why patients with CKD have a higher incidence of adverse medication events than patients with normal kidney function
Biography
Bradley L Urquhart obtained his PhD in 2006 in Pharmacology and Toxicology at Western University in London, Ontario. He completed Post-doctoral training at Vanderbilt University and Western University in Clinical Pharmacology. In 2009, he began as an independent Investigator at Western University. His lab focuses on changes in drug disposition in the setting of kidney disease
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7