alexa Designing Nanofunctional Hybrid Materials
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

3rd International Conference and Exhibition on Materials Science & Engineering
October 06-08, 2014 Hilton San Antonio Airport, USA

Nekane Guarrotxena
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022.S1.014
Abstract
The size- and shape- dependent tunable optical, magnetic, and electronic properties of inorganic nanoparticles make them central building blocks in nanomaterials science, opening interesting pathways to fundamental research, and biomedicaland device- technology. These unique properties can also be customized by surface modification, functionalization or by developing nanocomposites with other nanomaterials and/or polymers for specific applications. Functionalization of inorganic nanoparticles with biocompatible polymers and/or natural or rationally designed molecules offers a route towards engineering responsive and multifunctional composite systems. A stimuli-responsive polymer can significantly change according to the environment it is in. The nonlinear response of these polymers makes them so unique and effective. So far, functional smartpolymers are becoming increasingly straightforward to design nanomaterials with a remarkable range of predictable responses and other properties. Despite the important work done along the last years on the surface coating of NPs, the establishment of new protocols for their functionalization is still needed. Rational functionalization of NPs with smart and/or biocompatible polymers and copolymers provides new and potential nanosystems in sensing, diagnostic, imaging, magnetic, electronic and structural applications. In this context, a new polymer synthetic protocols and colloidal NPs functionalization approaches to design multifunctional hybrid materials with optimized properties has been developed. This control over nanoparticles surface functionalization at the nanoscale coupled with improved fluorescence, surface plasmon, and surface enhanced Raman scattering-(SERS) properties from them have led to the development of novel functional nanoparticles-based systems with improved and potential clinical and medical applications. Some recent results and strategies will be discussed in this talk.
Biography
Nekane Guarrtxena is a PhD from the University of Complutense, Madrid-Spain in 1994 and has been doing Post-doctoral research at Ecole Nationale Superieure d?Arts et Metiers, Paris-France (1994-1995) and University of ScienceII, Montpellier-France (1995-1997). From 2008-2011, she was visiting Professor in the Department of Chemistry, Biochemistry and Materials at University of California, Santa Barbara-USA and the CaSTL at University of California, Irvine-USA. She is currently Research Scientist at Institute of Polymers Science and Technology, CSIC-Spain. Her research interest focuses on the synthesis, surface modification and assembly of hybrid nanomaterials, nanoplasmonics, and their use in nanobiotechnology applications (bioimaging, drug delivery, therapy and biosensing).
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords