alexa Developing Brain As An Endocrine Organ: A Paradoxical Reality
ISSN: 2161-1017

Endocrinology & Metabolic Syndrome
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

2nd International Conference on Endocrinology
October 20-22, 2014 DoubleTree by Hilton Hotel Chicago-North Shore, USA

Michael V Ugrumov
ScientificTracks Abstracts: Endocrinol Metab Synd
DOI: 10.4172/2161-1017.S1.005
Abstract
The maintaining of homeostasis in the organism in response to a variable environment is provided by the highly hierarchic neuroendocrine-immune system. The crucial component of this system is the hypothalamus providing the endocrine regulation of key peripheral organs, and the adenohypophysis. In this case, neuronderived signaling molecules (SM) are delivered to the blood vessels in hypothalamic ??neurohaemal organs?? lacking the blood?brain barrier (BBB), the posterior lobe of the pituitary and the median eminence. The release of SM to the blood vessels in most other brain regions is prohibited by BBB. According to the conventional concept, the development of the neuroendocrine system in ontogenesis begins with the ??maturation?? of peripheral endocrine glands which first are self-governed and then operate under the adenohypophysial control. Meantime, the brain maturation is under the control of SM secreted by endocrine glands of the developing organism and coming from the placenta and maternal organism. The hypothalamus is involved in the neuroendocrine regulation only after its full maturation that is followed by the conversion of the opened-looped neuroendocrine system to the closed-looped system as in adulthood. Neurons of the developing brain begin to secrete SM shortly after their origin and long before the establishment of specific interneuronal relations providing initially autocrine and paracrine morphogenetic influence on differentiating target neurons. Taking into account that the brain lacks BBB over this ontogenetic period, we hypothesized that it operates as the multipotent endocrine gland secreting SM to the general circulation and thereby providing the endocrine regulation of peripheral organs and the brain. The term ??multipotent?? means that the spectrum of the brain-derived circulating SM and their occupancy at the periphery in the developing organism should greatly exceed those in adulthood. In order to test this hypothesis, gonadotropin-releasing hormone (GnRH), dopamine (DA), and serotonin (5-hydroxytryptamine, 5-HT) were chosen as the markers of the presumptive endocrine function of the brain in ontogenesis. According to our data, the concentrations of GnRH, DA, and 5-HT in the rat general circulation during the perinatal period, i.e. before the establishment of BBB, was as high as those in the portal circulation in adulthood. The concentrations of circulating GnRH and DA dropped to almost undetectable level after the development of BBB suggesting their brain origin. This suggestion has been proven by showing an essential decrease of GnRH, DA, and 5-HT concentrations in general circulation of perinatal rats after microsurgical elimination of synthesizing neurons or the inhibition of specific syntheses in the brain before the establishment of BBB. GnRH, DA, and 5-HT apparently as dozens of other brain-derived SM appear to be capable of providing the endocrine influence on their peripheral targets like the adenohypophysis, gonads, kidney, heart, blood vessels, and the brain (endocrine autoregulation). Although the ontogenetic period of the brain operation as the multipotent endocrine gland is relatively short, the brain-derived SM are thought to be capable of providing long-lasting morphogenetic effects on peripheral targets and the brain. Thus, the developing brain operates as the multipotent endocrine gland from the onset of neurogenesis to the establishment of BBB providing the endocrine regulation of the developing organism.
Biography
M Ugrumov graduated from Moscow University Medical School in 1970 and received PhD at Institute of Evolutionary Physiology and Biochemistry USSR Academy of Sciences in 1974. He was a Senior Researcher at the Institute of Human Morphology RAMS (1974-77) and the Institute of Developmental Biology RAS (1977- 87). He is a Head of the Laboratory at the Institute of Developmental Biology from 1987 and at the Institute of Normal Physiology from 1996 till now. He got a Professorship in Pharmacology and Radiobiology in 1996 at the State Medical University, Moscow, Russia and elected as a Corresponding Member of the Russian Academy of Sciences in 1997 and as a full Academician of the Russian Academy of Sciences in 2006. He is the advisor to the President of the Russian Academy of Sciences (RAS) on International Scientific Cooperation, a member of the Scientific-technical Council at Chairman of the Federal Assembly of RF, Vice-president of Russian Physiological Society. He was a Visiting Prof. at: Univ. Medical School, Tokushima (Japan) in 1988-89; Medical University of Ulm (Germany) in 1993; University of Tours (France) in 1998, 2000; University P. et M. Curie (Paris, France) in 1993-2010.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neu[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords