alexa
Reach Us +44-7482877764
Development Of SiC Based Nanocomposites With Enhanced Electrical Conductivity | 82298
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Development of SiC based nanocomposites with enhanced electrical conductivity

15th Annual Congress on Materials Research & Technology

Pavol Hvizdos

Institute of Materials Research-Slovak Academy of Sciences, Slovakia

Keynote: J Material Sci Eng

DOI: 10.4172/2169-0022-C1-090

Abstract
Three principal types of materials were developed and investigated: SiC-TiNbC, SiC-CNT a SiC-graphene. They were compacted using standard hot pressing (HP), spark plasma sintering (SPS), and rapid hot pressing (RHP). Their microstructure, chemical and phase composition were studied in detail, the results showed successful microstructure design and confirmed desired composition. In all cases a reference material, a single phase SiC, prepared by the same ways, was used for comparison. As the base, series of three optimized SiC-TiNbC (with 30, 40 and 50 wt.% of TiNbC) composites were developed. Increase in electrical conductivity by four orders was achieved without compromising the mechanical and tribological properties. Technological tests showed possibilities to machine these materials by electric discharge technique as well as other non-conventional methods. The materials with carbon based nano-fillers included SiC-graphene and SiCCNT (carbon nanotubes). Methods of their preparation were optimized, mainly to achieve a good distribution of the carbon nano-phases. In SiC-graphene (graphene nano-platelets and reduced graphene oxide up to 5 wt.%) the rapid hot press (RHP) technique was successfully developed and tested and materials with graphene nano-platelets and reduced graphene oxide were produced. Both types reached satisfactory parameters with respect to their microstructure and basic mechanical properties. Their electrical conductivity increased by four orders which clearly shows their potential. In SiC-CNT (with up to 10 wt.% CNT) a new technique of in situ CNT preparation by CCVD was developed. This enabled to solve the problem with distributing of CNTs and in this way to increase the electrical conductivity by about three orders of magnitude.
Biography

Pavol Hvizdos has been working in the Structural Ceramics Department of IMR SAS, Kosice, Slovakia, since 1988. In 1996 he has received his PhD degree in Material Sciences from Technical University, Kosice, Slovakia. From 2000 to 2008 he has worked as a Marie Curie Fellow in Queen Mary University of London, UK and as a Ramon y Cajal Fellow at Polytechnic University of Catalonia, Barcelona, Spain. Currently he is a Senior Scientist in IMR SAS Kosice. His scientific expertise includes microstructure and fracture properties of composite structural ceramics, recently his interests have been focused on nano-indentation and tribology of composite materials and cermets.
Email:[email protected]

Top