alexa Doxorubicin Conjugated Fe3O4-GQD Nanoparticle For Magnetically Targeted And PH Responsive Drug Delivery Vehicle: A Two Way Targeted Approach
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

7th Annual Congress on Materials Research and Technology
February 20-21, 2017 Berlin, Germany

Ankan Dutta Chowdhury, Akhilesh Babu Ganganboina and Ruey-an Doong
National Chiao Tung University, Taiwan
National Tsing Hua University, Taiwan
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022.C1.058
Abstract
Fluorescence imaging using doxorubicin (DOX) has been used to image free and encapsulated drug uptake into cells, since intercalation of Dox with DNA leads to a characteristic change. However, suitable nano-conjugates which can able to deliver Dox in a much targeted manner with high specificity in cancer cell are still in extensive search. In this study, we report an anticancer drug delivery system based on doxorubicin-conjugated Fe3O4-GQD based nanoparticles which can act as pH mediated as well as magnetic targeted drug delivery nanocarrier. The as-synthesized nanoparticles consist of uniform spherical size with an average diameter of 35 nm. The drug delivery system demonstrates the ability to release DOX by desorption of drug molecule from GQD surface in mildly acidic environments, mimicking the cancerous cell environment. By functionalizing the surface of the GQD with the iron oxide nanoparticle, the drug releasing phenomenon can be controlled and targeted by the external magnetic effect. The quenching of GQD by DOX due to resonance energy transfer mechanism is applied as optical probe to confirm the DOX conjunction and monitor the release of DOX. The DOX-conjugated nanocarrier exhibits an obvious cytotoxic effect on HELA cancer cells via MTT assay. In addition, the less cytotoxicity of the drug nanocarrier in normal endothelium cell also strongly support the specificity towards the cancer cell which is the most successful aspect of this delivery system. Meanwhile, the successful delivery on magnetic environment of DOX-conjugated nanoparticles was demonstrated through in house made dialysis bag chamber and fluorescence microscopy. Such drug delivery system, which combines pH-triggered and external magnet controlled drug release, has excellent potential applications in cancer therapy and smart imaging. We demonstrate here that, this new class of nanocarrier can fulfill the required specificity and sensitivity as next generation cancer imaging, therapy and sensing system in vitro.
Biography

Ankan Dutta Chowdhury completed his BS in 2006 at Calcutta University, Kolkata, India and MS in Chemistry at G.G.U., Bilaspur, India. He is currently continuing his research as a Post-doctoral Scientist at ECCL, NCTU, Taiwan on “Bio-sensing, drug delivery and capacitative study using synthesized nanomaterials”. He completed his PhD in Chemical Sciences at Saha Institute of Nuclear Physics, India. His research interests lie in the area of “Biosensor and different nano materials applications”.

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords