alexa Electrical Spin Injection And Detection In Molybdenum Disulfide Multilayer Channel
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

9th World Congress on Materials Science and Engineering
June 12-14, 2017 Rome, Italy

Henri Jaffres
Scientific Research National Center (CNRS), France
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-067
Molybdenum disulfide has recently emerged as a promising two-dimensional semiconducting material for nano-electronic and spintronic applications. However, the demonstration of an electron spin transport through ferromagnetic source and drain connecting a semiconducting MoS2 channel remains challenging. Here, the author will present the experimental evidence of the electrical spin-injection and spin-detection in the conduction band of a multilayer MoS2 semiconducting channel using a two terminal spin-valve configuration geometry. A magnetoresistance around 1% have been observed through a 450 nm long, 6 monolayer thick MoS2 channel with a Co/MgO tunneling spin injector and detector. It is found that keeping a good balance between the interface resistance and channel resistance is mandatory for the observation of the two-terminal magnetoresistance. Moreover, the electron spin-relaxation is found to be greatly suppressed in the multilayer MoS2 channel with an in-plane magnetization and spin-polarization. The long spin-diffusion length (approximately 235 nm) could open a new avenue for spintronic applications using multilayer transition metal dichalcogenides. In this talk, corollary to experiments, I will particularly emphasize on the mechanism of spin-injection at interfaces between a spin-polarized tunnel junction and a semiconductor channel, homogeneous or not. The latter can be composed of several regions, uniformly doped or depleted to form a Schottky contact and possibly location of a conduction made by hopping. I will extend the conditions for spin-injection from a spin- polarized ferromagnetic source into a Schottky contact on the ground of the experiments observed with success on MoS2 systems.

Henri Jaffrès completed his PhD in the Physics department of the National Institute of Applied Sciences (INSA), University Toulouse III, France, in 1999. He joined the Joint Physics Unit CNRS-Thales, France as a Post-doctoral Fellow (2000–2001). His work focuses on spintronics, spin injection, spin transport, and spin transfer in semiconductor spintronics devices with electrical and optical detection in III-V heterostructures, as well as spin-hall effect and spin-pumping in group IV semiconductors.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version