Reach Us +44-1522-440391
Electrochemical And Label-free Immunosensors Applied To Point-of-care Testings | 80228
ISSN: 2155-9538

Journal of Bioengineering & Biomedical Science
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Electrochemical and label-free immunosensors applied to point-of-care testings

Joint Event on 5th International summit on Medical Biology & Bioengineering & 8th International Conference & Exhibition on Biosensors and Bioelectronics

Rosa F Dutra

Federal University of Pernambuco, Brazil

ScientificTracks Abstracts: J Bioengineer & Biomedical Sci

DOI: 10.4172/2155-9538-C1-017

Statement of the Problem: Point-of-care testings hold great promise for economic, rapid and practical diagnosis of several diseases, benefiting those with high morbimortality rates. Electrochemical biosensors using amperometric transduction have several advantages as compared to optical and acoustical transductions due to their ease scale up, fast response and low cost connection with compact (hand-held) analyzers. However, several drawbacks on performance have limited their large use in clinical diagnostic. The purpose of this study is to describe some strategies of sensor platforms using conducting polymer integrating carbon allotropes including carbon nanotubes, graphene and fullerene, in order to overcome challenges required as a low limit of detection and a good reproducibility. Methodology & Theoretical Orientation: Different nanocomposites were electro-synthetized by using a mixture of the respective carbon allotrope and monomers of conductive polymer (pyrrole, thiophene, ethylenediamine, etc.). Afterwards, antigen or antibodies were covalently immobilized on the sensor surface, followed by blocking of non-specific bindings. Findings: It was observed that the synergism between these materials (conductive polymer and carbon allotrope) has increased the electron transfer charge, electrode surface area, amount of immobilized biomolecules, faradaic current and conductivity; besides, the functionalized nanomaterials have also promoted covalent immobilization and exposure of reactive sites to analytes. Cardiac troponin T, dengue, hepatitis and degenerative disease were the analytes detected in these immuno-sensors. Conclusion & Significance: Label-free and redox probe-free responses using amperometric electrochemical technique for detecting analytes in serum and whole blood was obtained. The analytes were found at clinical range of relevance for diagnosis of corresponding diseases. These prospective sensors are potentials for point-of-care testing with ease scale-up and greater performance.

Rosa F Dutra is a Professor in Department of Biomedical Engineering at Federal University of Pernambuco. She is an Electronic Engineer, completed her Master’s in Biomedical Engineering, PhD and Post-doc in Biotechnology. Her research is focused on immuno-sensors, geno-sensors, biomimetic sensors, surface modification, synthesis and functionalization of nanomaterials developing several platforms for measuring biomolecules interaction, using acoustic, optical and electrochemical transducers, focusing in the point-of-care testing. She has supervised more than 25 Post-graduate students and nowadays, she coordinates four great health research projects.

Relevant Topics