alexa Electronic And Magnetic Behaviors Of 2D Atom-thin Layers: Graphene, Black Phosphorus, Hexagonal Boronnitride And MoS2
ISSN: 2329-6798

Modern Chemistry & Applications
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Related Subjects

Share This Page

Additional Info

Loading
Loading Please wait..
 

5th Global Chemistry Congress
September 04-06, 2017 | London, UK

Junji Haruyama
Aoyama Gakuin University, Japan
University of Tokyo, Japan
ScientificTracks Abstracts: Mod Chem Appl
DOI: 10.4172/2329-6798-C1-005
Abstract
Two-dimensional (2D) atom-thin layers have attracted significant attention after the discovery of primitive fabrication method of graphene (i.e., mechanical exfoliation of graphite using scotch tapes). As a van-deer Waals engineering, various atom-thin layers and those hybridization are recently studied. In the talk, first, I present magnetism and spintronics arising from edges of 2D atom-thin layers (e.g., graphene, few-layer black phosphorus (BP), hexagonal boron-nitride (hBN), and molybdenum disulfide (MoS2)). I create nanomesh (NM) structures, consisting of honeycomb like array of hexagonal nano-pores, with specified poreedge atomic structure (i.e., zigzag type) on individual layers. Interestingly, hydrogen-terminated graphene NM (H-GNM) shows flat-band ferromagnetism, while it disappears in oxygen-terminated GNM (O-GNM). On the other hand, O-BPNM exhibits large ferromagnetism (100 times) due to ferromagnetic spin coupling of edge O-P bonds, whereas it is eliminated in H-BPNM. O-hBNNM also shows large ferromagnetism due to edge O-B and O-N bonds, while it disappears in H-hBNNM. These are also highly sensitive to annealing temperatures to form zigzag pore edge. These open a considerable avenue for realizing 2D atom-thin flexible magnetic and spintronic devices, fabricated without using rare-earth magnetic atoms. Second, I show creation of the world-thinnest Schottky junction on few-layer MoS2, one of the transition metal dichalcogenides. The 2H-phase of MoS2 has direct band gaps of 1.5−1.8 eV. It is demonstrated that electron-beam (EB) irradiation to the 2H-phase causes semiconductor-metal transition to 1T-phase and atomically-thin Schottky junction with barrier height of 0.13−0.18 eV is created at the interface of 2H/1T regions. These findings also indicate a possibility that the effective barrier height is highly sensitive to electrostatic charge doping and almost free from Fermi-level pinning when assuming predominance of the thermionic current contribution. This EB top-down patterning opens the possibility to fabricate in-plane lateral heterostructure FETs, which have shown promising scaling prospects in the nanometer range, and/or local interconnects directly with metallic phase (1T) between (2H)MoS2 transistors, resulting in ultimate flexible and wearable in-plane integration circuits without using 3D metal wirings. Finally, I will also briefly talk about introduction of spin-orbit interaction into graphene by nano-particle decoration.
Biography

Junji Haruyama graduated from Waseda University, Tokyo, Japan, in 1985. He joined Quantum Device Laboratory, NEC Corporation, Japan and worked until 1994. He received PhD in Physics from Waseda University in 1996. During 1995–1997, he worked with the University of Toronto, Canada and also Ontario Laser and Lightwave Research Center (Canada) as a Visiting Scientist. Since 1997, he has been working at Aoyama Gakuin University as a Professor. He was also a Visiting Professor at NTT Basic Research Laboratories, Institute for Solid State Physics, University of Tokyo, and Zero-emission Energy Center, Kyoto University, Japan. He has been also a Principal Researcher at Air-Force Office of Scientific Research (AFOSR), USA, since 2010. He has peer review publications over 100 and four patents, and also invited talks over 150.

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords