alexa Escherichia Coli HGT - A Novel High Glucose Throughput Chassis Especially Designed For Typical Production Conditions In Large Scale Based On Comprehensive Systems Biology Studies
ISSN: 2332-0737

Current Synthetic and Systems Biology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

3rd International Conference on Systems and Synthetic Biology
July 20-21, 2017 Munich, Germany

Ralf Takors
University Stuttgart, Germany
ScientificTracks Abstracts: Curr Synthetic Sys Biol
DOI: 10.4172/2332-0737-C1-008
Sooner or later novel processes with recombinant producers should find their way from the labs to large-scale fermenters to commercialize the product. However, successful scale-up is often hampered by harsh production conditions which expose the strains to frequently changing substrate supply due to technical limits of mixing. In a series of systems biology experiments, metabolic and transcriptional responses of E. coli to large-scale conditions were studied. Short- and long-term consequences of changing glucose and nitrogen availabilities were investigated. Applying typical mixing times of 110 seconds, more than 600 genes were found to be frequently up- and down regulated. Accordingly, cellular maintenance demands increased by 40 to 50% which was identified by measurements and by systems modeling and which created a list of gene candidates for smart genome reduction. ppGpp, the alarmone of stringent response, turned out to be protagonist of the observed regulation programs. Engineering of key genes of the stringent response together with modulations in central metabolism finally yielded E. coli HGT. The strain shows 10 fold increased glucose uptake rates (compared to the native maintenance demands) under resting or slow growth conditions which are a preferred production scenario. The surplus of glucose uptake is available as pyruvate to enable likewise utilization which is why E. coli HGT represents a novel chassis for the production of pyruvate derived products in large-scale.

Ralf Takors completed his PhD in Biochemical Engineering in 1997 and received Habilitation in Metabolic Engineering in 2004, both at Forschungszentrum Jülich GmbH and RWTH Aachen. He has worked at the Evonik Industries till 2009, where he was responsible for bioprocess development, metabolic engineering and systems biology research. In 2009, he became the Head of the Institute of Biochemical Engineering at the University Stuttgart. His research interests are systems metabolic engineering and synthetic biology for the development of novel bioprocesses.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version