alexa Fabrication Of Co-Cr Alloys For Biomedical Applications By Implementing Rapid Solidification
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

9th World Congress on Materials Science and Engineering
June 12-14, 2017 Rome, Italy

A L Ramirez-Ledesma and J A Juarez-Islas
National Autonomous University of Mexico, Mexico
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-067
Statement of the Problem: It is well known that there is a lack of innovation with respect to solidification processes on Co-Cr based alloys for biomedical applications (e.g. dental implants and permanent stents). Moreover, the most conventional technique to obtain Co-Cr biomedical devices is the investment casting process which involves inherent microstructural defects as a high percentage of interdendritic segregation and several precipitates distributed along the microstructure. All these features results in a decrement of the mechanical properties in Co-Cr alloys used in the biomedical field. Methodology & Theoretical Orientation: High purity cobalt (99.99 %) and chromium (99.99%) were used as starting metals for processing the experimental Co-Cr alloy. Rapid solidification regime was confirm trough the temperature profile recorded using an Amprobe TMD90A digital thermometer with R type thermocouples inserted into a ceramic sheath, embedded in the cooling metal. Findings: Rapid solidification promotes the elimination of interdendritic segregation and, in consequence, a diminution of precipitates can be achieved. On the other hand, a control in the γ-Co, FCC ↔ε-Co, HCP transformation was reached. The above microstructural and crystallographic features are related with the improvement on the mechanical properties and corrosion resistance on Co-Cr alloys. Theoretical solidification models were used to understand several features of rapid solidification regime imposed on Co-Cr alloys. These consist in a competitive growth analysis to predict the growth temperature limits of the eutectic constituent and the solid solution for the alloy system. Conclusion & Significance: Nowadays, Co-Cr alloys still are very important in the biomedical field. For this reason, it is important and necessary to propose alternative and innovative solidification procedures to fabricate Co-Cr biomedical devices. Consequently, we can improve the mechanical and corrosion properties significantly through a microstructural control.

A L Ramírez-Ledesma has her expertise in rapid solidification techniques for Co-Cr alloys and Zn based alloys. Her innovative and non-conventional solidification techniques create a newline of investigation for improving their performance in the biomedical field. Moreover, her collaboration with medical institutions (e.g. National Institute of Cardiology (INC, México, Ciudad de México) will allow the technological development of cardiovascular prosthesis which can be easily accessible for Mexican population. She was awarded with the Conacyt Scholarship for her Doctoral studies in Materials Science and Engineering Program (UNAM) at Materials Research Institute (UNAM).

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version