alexa Facile Synthesis Of Nanoscale Laminated Na3V2 (PO4)3 For High Performance Sodium Ion Battery Cathode | 61672
ISSN: 2090-4541

Journal of Fundamentals of Renewable Energy and Applications
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

International Conference on Battery and Fuel Cell Technology

Qiong Zheng, Kai Feng, Xianfeng Li, H Z Zhang and Huamin Zhang
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), China
ScientificTracks Abstracts: J Fundam Renewable Energy App
DOI: 10.4172/2090-4541.C1.023
Abstract
A facile synthesis of nanoscale laminated Na3V2 (PO4)3 for high performance sodium ion battery cathode is firstly proposed. In the synthesis process, a crystallized intermediate precursor with low cost raw materials is prepared by introducing a high temperature melton-state NH3 thermal reduction process, which acts as a reaction template to control the crystal growth and the morphology of the final product-Na3V2(PO4)3 (X-NVP). The synthesized nanoscale laminated structure of X-NVP cathode shows high discharge specific capacity and decent rate performance. At low rate of 0.5C, the discharge specific capacity is in the proximity of 117mAh g-1, which is very close to its theoretical specific capacity (117.6 mAh g-1), and there is only a very small capacity fade after 250 cycles at 2C. Even at 50C, the discharge specific capacity is higher than 80 mAh g-1 and the reversible capacity retention after 3000 cycles keeps higher than 78%. The intermediate precursor prepared by the high temperature melton-state thermal reduction method, acting as the reaction template of the final product, provides a solution for the synthesis of high-performance sodium ion battery cathode materials with excellent crystallinity and homogeneous nanoscale laminated structure.
Biography

Qiong Zheng has completed her PhD from Dalian University of Technology and Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS). She is currently a Post-doctor in the Division of Energy Storage in DICP, CAS. Her research interests focus on the key materials of sodium ion batteries and structure design and numerical simulation of flow batteries. She is also responsible for the battery performance evaluation and the standardization work on flow batteries.

Email: [email protected]

image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7