alexa Finite-element Analysis Of Velocity Mode Transition Of Crack Propagation In Rubber Materials
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

9th World Congress on Materials Science and Engineering
June 12-14, 2017 Rome, Italy

Atsushi Kubo and Yoshitaka Umeno
The University of Tokyo, Japan
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-067
Abstract
Crack propagation in rubber materials has been intensively investigated because it is one of fundamental processes of failure in rubber materials and is strongly related to the lifetime of rubber products. Some experiments have observed dynamic crack propagation in stretched rubber sheets and reported an interesting phenomenon called the "velocity mode transition". The mode transition is an abrupt change of tendency in the relationship between the crack propagation velocity and the tearing energy (or the loaded strain), as schematically shown in Fig. 1. There are two regions below and above a certain transition point, which are referred to as the "slow mode" and the "fast mode", respectively. According to the experiments, the crack velocity exhibits a nearly discontinuous change by more than two orders of magnitude at the transition point. While the behavior of a propagating crack at the fast mode can be explained theoretically, the mechanism of the mode transition phenomenon has been still unclear despite its importance. Furthermore, no numerical simulation has been established to reproduce the transition phenomenon thus far. In this talk, we present a series of analyses based on the finite element method (FEM) for purpose of revealing the mechanism of the mode transition phenomenon. We carried out FEM simulations of the pure-shear test to mimic a precedent experiment and obtained the relationship between the loaded strain and the crack propagation velocity. The material model consists of the hyper elasticity and viscosity, which were determined to reproduce the mechanical properties of a filled elastomer. As a result, the mode transition phenomenon was reproduced by the present FEM analyses, which revealed that the mode transition correlates to the viscoelastic behavior with a wide range of time scale. The mechanism of the transition phenomenon was well explained through a characteristic mechanical behavior at the crack tip.
Biography

Atsushi Kubo received his Doctorate degree in Mechanical Engineering from the University of Tokyo in 2015. His research interest is in a wide range of the computational simulation and modeling (mainly at the atomistic level) for the structural and functional materials, including semiconducting materials, ferroelectric materials, polymers, etc. In his current work at the Institute of Industrial Science, The University of Tokyo, he is investigating the mechanical properties of the structural polymers based on the atomistic- and macroscopic-level approaches.

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords