alexa Fluorescent Dipyrrin-typical-element Complexes Responding To External Stimuli | 21049
ISSN: 2161-0401

Organic Chemistry: Current Research
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

International Summit on Past and Present Research Systems of Green Chemistry

Tatsuya Nabeshima
ScientificTracks Abstracts: Organic Chem Curr Res
DOI: 10.4172/2161-0401.S1.002
Abstract
Dipyrrins and their complexes have attracted a considerable attention due to their strong absorption/fluorescence properties. In particular, BODIPY (4,4-difluoro-4-borata-3a-azonia-4a-aza-s-indacene) and its derivatives have been often utilized for sensors, bioimaging, OLEDs, solar concentrators, electroluminescence units, and laser dyes. Although more wide-ranging applications are expected on the basis of supramolecular chemistry, the examples using more highly functionalized dipyrrin complexes are still limited. Macrocyclic and linear BODIPY derivatives were developed, in which the BODIPY units work as an emissive unit and a binding site for a guest. Upon the complexation with a cationic chemical species, photophysical properties of the BODIPY derivatives were drastically changed. This result indicates these BODIPY hosts would be utilized for selective cationic guest sensing. Another efficient way to synthesize dipyrrin complexes with new properties is incorporation of a typical element other than boron. New types of Al, Si, Ge, and Sn complexes of dipyrrins that possess two hydroxyl groups as a ligating unit to afford the N2O2-type dipyrrin complexes were designed and synthesised. Interestingly, the silanol form of the pentacoordinate (hypercoordinate) Si complex is more stable than the siloxane form, which is always much more stable than the silanol in the case of usual tetracoordinate silicon complexes. In addition, interconversion between the silanol and siloxane is achieved by changing the solvent to cause considerable emission change. The corresponding Ge complex exhibits a similar structural and emission change. These novel dipyrrin complexes would be useful to construct fluorescent molecular devices and materials responding to external stimuli.
Biography
Tatsuya Nabeshima received his BS (1979) from The University of Tokyo, MS (1981) from University of Tsukuba, and PhD (1985) degrees from Kyoto University. In 1985, he joined Stanford University as a Postdoctoral fellow. He was promoted to Assistant Professor of University of Tsukuba in 1987. He became an Associate Professor in 1995, Professor in 1999, and the Director of TIMS (a research center in Univ. of Tsukuba, 2010-2013). He has received The Chemical Society of Japan Award for Creative Work in 2008.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version