alexa Gas-phase Dehydration Of Protonated Polyglycines
ISSN: 2157-7064

Journal of Chromatography & Separation Techniques
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

4th World Congress on MASS SPECTROMETRY
June 19-21, 2017 London, UK

K W Michael Siu, Justin Kai-Chi Lau, Brian Lam, Cheuk-Kuen Lai and Alan C Hopkinson
York University, Canada
University of Windsor, Canada
ScientificTracks Abstracts: J Chromatogr Sep Tech
DOI: 10.4172/2157-7064-C1-025
Abstract
Loss of water is a common reaction after collisional activation of protonated polypeptides. We selected polyglycines as prototypical polypeptides for examination of the source of the water loss. Polyglycines labeled with 18O at specific peptide linkages were custom-synthesized using Wang resin. Protonated tetra-glycine loses water predominantly from its first peptide linkage. Loss of water from the second peptide linkage increases in abundance with increasing peptide length, and becomes the predominant channel in hexaglycine. For tetraglycine, both density functional theory (DFT) calculations and infrared multiple photon dissociation (IRMPD) experiment strongly suggest that the dehydration product is formed by loss of water from the first peptide bond that results in a protonated imidazole-4-one. Preliminary DFT and collision-induced dissociation (CID) results continue to support this structural interpretation for the dehydration products of pentaglycine and hexaglycine that involve loss of water from the first peptide bond. Those results that involve water loss from the second peptide bond suggest a series of rearrangement reactions prior to dissociation. Our results thus indicate multiple pathways of polyglycines dehydration that are competitive.
Biography

K W Michael Siu is a Canadian chemist, currently a Distinguished Research Professor at York University. He is a Fellow of the Royal Society of Canada and Chemical Institute of Canada.

Email: [email protected]

image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords