alexa Genetic Engineering Of Tobacco Plants By Expressing Arsenic Responsive Genes Of Lysinibacillus Sphaericus And Arabidopsis Thaliana For Removal Of Arsenics From The Contaminated Lands
ISSN: 2155-9821

Journal of Bioprocessing & Biotechniques
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

15th Asia-Pacific Biotechnology Congress
July 20-22, 2017 Melbourne, Australia

Abul Mandal
University of Skövde, Sweden
Keynote: J Bioprocess Biotech
DOI: 10.4172/2155-9821-C1-011
Abstract
Contamination of foods and water with heavy metals, such as arsenic is a severe threat to human health and the environment. Long-term exposure to arsenic leads to chronic poisoning of human health and results in severe diseases such as keratosis, gangrene, kidney damage, neurovascular disorders and many forms of cancer. In this paper we report our recent results on genetic engineering of tobacco plants for removal of arsenics from the contaminated lands so that arsenic free foods and fodders can be obtained from these soils. Previously, by using bioinformatics, molecular biology and microbiology tools, we have identified and studied three key genes suitable for this purpose. One of these genes (PCS1) was isolated from the model plant Arabidopsis thaliana and the other two genes (arsB and arsC) were isolated from an arsenic-resistant bacterium Lysinibacillus sphaericus collected from an arsenic contaminated land in South East. Our modeling studies show that by overexpressing PCS1, it is possible to increase the uptake and accumulation of arsenic in the roots of the model plant A. thaliana by 38%, which means that the arsenic content in the growth medium could be reduced by the same amount. Preliminary results obtained very recently in the laboratory experiments show that transgenic Escherichia coli strains overexpressing arsB and arsC genes of Lysinibacillus sphaericus can reduce arsenic content in the liquid growth medium by 46% . Now we have transferred these genes into tobacco plants in various combinations by using Agrobacterium tumefaciens T-DNA mediated gene transfer system and transgenic tobacco lines have been regenerated. Evaluation of bioremediation potentials of these plants (increased uptake and accumulation of arsenics) will be discussed.
Biography

Abul Mandal has completed his PhD from University of Agriculture in Cracow, Poland and Postdoctoral studies from University of Stockholm, Sweden. In 2010, he was appointed as a Professor of Molecular Biology at the System Biology Research Center of the University of Skövde, Sweden. Currently, he is heading the Biotechnology Research Group at the same university. He also functions as the Academic Coordinator of the School of Bioscience. He has three patents that have already been granted by the United States Patent and Trademark Office (USPTO) in the USA and one PCT patent that has been granted by the Patent Office in India. He has also published more than 100 papers in reputed peer reviewed journals. Since 2010, he has been serving as an Editorial Board Member of several scientific journals.

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version