alexa Geometry And Size Dependent Structural Reversibility Of Sub-micrometer Polymer Structures
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

9th World Congress on Materials Science and Engineering
June 12-14, 2017 Rome, Italy

Hong Yee Low
Singapore University of Technology and Design, Singapore
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-067
Highly uniform, sub-micrometer surface patterns have been actively investigated as non-chemical means of surface engineering. Surface functionalities such as wetting, friction and optical effects can be engineered through a variety of micrometer and nanometer surface patterns; such functionalities are greatly influenced by geometries and length scales of the surface patterns. Changes to the geometry and the sizes of the surface pattern can result in changes in the associated surface functionalities or have implications on the durability of the surface functions. In this study, a systematic quantification of the mechanical deformation and the recovery of nanoimprinted sub-micrometer polymers have been conducted. Shape memory polymers Nafion and polyurethane acrylate (PUA) were programmed with permanent shape memories of the surface patterns via high temperature nano-imprinting. Surface patterns ranging from 2 micrometer to 200 nm were investigated under uniaxial tension and compression. The geometrical deformation and recovery of the surface patterns were quantified using atomic force microscopy (AFM). A schematic methodology employed in this study is shown in figure-1. Geometrical deformation and recovery were found to be dependent on the pattern size, aspect ratio and geometries (isotropic versus anisotropic, protrusion versus recess structures). A transition in deformation mechanism was also found to be dependent on the size and aspect ratio of the structures. Understanding the mechanical deformations of these surface patterns is important towards achieving durable surface patterns, their functions and opens new opportunity for engineering active surface patterns.

Hong Yee Low received her education in the field of Polymer Science and Engineering from Case Western Reserve University, Cleveland, USA. In the past 15 years, her research interests and activities have been in nanofabrication of polymeric structures and in the studying the surface properties of micro- and nanoscale surface patterns. In her research, nano-imprint process has been the primary fabrication technique used for creating a variety of complex, quasi 3-dimensional micro- and nanoscale surface patterns. Biomimicry is also an approach she has adopted in developing novel surface structures and functionalities. The surfaces developed by her research group have been applied in applications ranging from electronics, biomedical and optical devices.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version