alexa Graphene Oxide Coated S Particles With Long Cycle Life For Lithium Sulfur Battery
ISSN: 2090-4541

Journal of Fundamentals of Renewable Energy and Applications
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

2nd International Conference on Battery and Fuel Cell Technology
July 27-28, 2017 | Rome, Italy

Liu Shuangke, Hong Xiaobin and Xie Kai
National University of Defense Technology, China
ScientificTracks Abstracts: J Fundam Renewable Energy Appl
DOI: 10.4172/2090-4541-C1-035
Abstract
Lithium sulfur battery has been regarded as one of the most promising high energy density rechargeable energy storage system for next generation due to its high theoretical specific capacity/energy density, natural abundance and environmental friendliness. However, the rapid capacity fade during long cycles which is caused by polysulfide shuttle and volume expansion during cycles tremendously inhibits its practical application. Building coated architecture of sulfur is one effective way to confine sulfur in the sulfur cathode thus enables stable cycle life. For example, Zhou et al. reported a sulfur/GO core-shell particle, in which sulfur particle were well wrapped by GO, demonstrating very stable cycle performance up to 1000 cycles. Herein, we also prepared GO-coated sulfur particles to enhance the cycle performance of lithium sulfur battery. Different from the above example which uses milled nano-sulfur particles, we use sodium sulfide and sodium sulfite to generate sulfur particles in aqueous GO solution followed by centrifugation and freeze-drying process, which results in in situ coating structure. The SEM (Fig. 1 a) and TEM (Fig. 1 b, c) images clearly demonstrate sulfur particles are well wrapped by wrinkled GO sheets, the high resolution TEM result indicate the crystal phase of sulfur particles. Due to the intact coating structure of GO and good chemical bond between sulfur and GO, the GO-coated sulfur particle cathode shows excellent cycling performance. Figure 1d demonstrates its cycle performance at 1 C rate, the initial discharge capacity is 513.4 mAhg-1, with 467.4 mAhg-1 retained after 400 cycles, corresponding to capacity retention of 91%. However, after 400 cycles, the capacity fades starts to speed up with 260.6 mAhg-1 and 225.1 mAhg-1 left after 800 and 1000 cycles. These results indicate that the physical GO coating could effectively suppress polysulfides shuttle effect and enhance the cycling performance but cannot completely eliminate it.
Biography

Liu Shuangke studies energy materials and electrochemistry, including synthesis of metal oxides, nano-carbons, sulfur-carbon composites as well as their applications in lithium storage and conversion. He received his Bachelor’s degree in Materials Science & Engineering at Hunan University, China in 2010; Master’s degree in Applied Chemistry in 2012 and; Doctorate degree in Materials Science & Engineering in 2016 at National University of Defense Technology, China. He is now an Assistant Professor in Department of Materials Science & Engineering at National University of Defense Technology, China.

image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords