alexa Graphene/h-BN Heterostructures Based Field Effect Transistors Employing Chemical Vapor Deposition Grown H-BN As A Dielectric Layer
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

7th Annual Congress on Materials Research and Technology
February 20-21, 2017 Berlin, Germany

Dae Joon Kang
Sungkyunkwan University, Republic of Korea
Keynote: J Material Sci Eng
DOI: 10.4172/2169-0022.C1.057
Abstract
Hexagonal boron nitride (h-BN) has emerged as an exceptional dielectric material for graphene field effect transistors (GFETs). GFETs exploiting mechanically exfoliated h-BN dielectrics exhibited an order of magnitude improvement in device mobility, reduced carrier in-homogeneity, lower extrinsic doping, reduced chemical reactivity, and improved highbias performance when compared with devices with conventional oxide dielectrics. Chemical vapor deposition (CVD) based growth of high-quality graphene and h-BN over a large-area is currently the most widely used. However, the CVD grown h-BN dielectric has not been demonstrated for high-performance GFETs. This is mainly due to problems associated with a contamination issue in a thin poly(methyl methacrylate) (PMMA) assisted transfer of CVD-grown 2D materials, such as graphene and h-BN, from a growth substrate to a target substrate for the optical and electronic devices fabrication. This limits further study of heterostructure of 2D materials using layer-by-layer transferring methods. In this work, we have developed a facile transfer technique for 2D materials by adding a water-soluble PVA layer in-between PMMA and 2D materials grown on the rigid substrate. This technique allows not only effective transfer to a target substrate with a high degree of freedom but also etching-free PMMA-assisted transfer while minimizing the effects of related contaminants on the material surface. GFETs transferred by this process exhibits a negative shift of charge neutrality point close to zero and both graphene and graphene/h-BN FETs showed greater mobility, higher current modulation and smaller hysteretic than GFETs that use PMMA assisted transfer due to the elimination of PMMA contaminants. Our results demonstrated that the developed transfer method is so versatile that multilayer stacking of heterostructure of graphene and h-BN materials, and wafer-scale transfer are reliably performed. This facile transfer technique presents great potential for future research and application for high performance, flexible and transparent in the large area of mechanical, optical and electronic devices based on graphene/h-BN heterostructures.
Biography

Following 20 years of extensive research experiences in solid-state physics and nanotechnology at UK and USA based universities, Prof. Kang moved to Sungkyunkwan University in 2005, one of the premier research oriented universities in Korea to take up a professorship. He has published more than 180 SCI peer-reviewed articles in the top journals including Nature Nanotechnology, Advanced Materials, Nano Letters, ACS Nano, Advanced Functional Materials and several book chapters in solid-state physics and nanotechnology areas covering from nanofabrication to materials synthesis and to device physics. The quality of his work can be easily indicated by Scopus H-index of 34 and the total citation of over 4000. He has served as an editorial board member for several internationally renowned scientific journals including IOP journal “Nanotechnology” since 2006 and as an Editor-in-Chief in Current Nanoscience since 2014. He has played a key role in several nation’s most competitive research programs including Science Research Center, Priority Research Center and World Class University programs as a co-principle investigator, which proves his research excellency and professional competence. He has given numerous keynote and invited lectures in many renowned international conferences.

Email:[email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords