alexa High Resolution Satellite Precipitation Estimation Based On Cloud Classification
ISSN: 2168-9792

Journal of Aeronautics & Aerospace Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

3rd International Conference and Exhibition on Satellite & Space Missions
May 11-13, 2017 Barcelona, Spain

Nicolas H Younan
Mississippi State University, USA
Keynote: J Aeronaut Aerospace Eng
DOI: 10.4172/2168-9792-C1-015
Abstract
Satellite precipitation estimation at high spatial and temporal resolutions is beneficial for research and applications in the areas of weather, flood forecasting, hydrology and agriculture. In this presentation, we incorporate advanced image processing and pattern recognition tools into the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) methodology to enhance satellite precipitation and rainfall estimation. The enhanced algorithm incorporates five main steps to derive precipitation estimates: Segmenting the satellite infrared cloud images into patches; extracting features from the segmented cloud patches; feature selection or dimensionality reduction; categorizing the cloud patches into separate groups and; obtaining a relationship between the brightness temperature of cloud patches and the rain-rate (T-R) for every cluster. In addition to the features utilized for cloud patch classification, wavelet and lightning features are also extracted. Both feature selection and dimensionality reduction techniques are used to reduce the dimensionality as well as diminish the effects of the redundant and irrelevant features. A variety of feature selection techniques, such as feature similarity selection and a filter-based feature selection using genetic algorithm are examined and the Entropy Index (EI) fitness function is used to evaluate the feature subsets. Furthermore, independent component analysis was examined and compared to other linear and nonlinear unsupervised dimensionality reduction techniques to reduce the dimensionality and increase the estimation performance. The results show that the enhanced algorithm incorporating the above techniques improves precipitation estimation.
Biography

Nicolas H Younan is completed his BS and MS at Mississippi State University, in 1982 and 1984, respectively, and PhD at Ohio University in 1988. His research interests include Signal Processing and Pattern Recognition. He has been involved in the development of advanced signal processing and pattern recognition algorithms for data mining, data fusion, feature extraction and classification, and automatic target recognition/identification. He has published over 250 papers in refereed journals, conference proceedings, and book chapters. He served as the General Chair and Editor for the 4th IASTED International Conference on Signal and Image Processing; Co-editor for the 3rd International Workshop on the Analysis of Multi-Temporal Remote Sensing Images; Guest Editor of Pattern Recognition Letters, and Co-chair of Workshop on Pattern Recognition for Remote sensing (2008-2010).

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords