alexa Highly Dispersed Zinc Based Sorbents For Hot Gas Desulphurization: Synthesis And Application
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

9th World Congress on Materials Science and Engineering
June 12-14, 2017 Rome, Italy

David Lokhat and Milan Carsky
University of KwaZulu-Natal, South Africa
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-067
Most hydrocarbon fuels like petroleum, natural gas and coal contain other elements in small quantities which, after hightemperature processing, are transformed into various impurities. These impurities include compounds of sulphur. Conventional methods of desulphurization involve absorption of the acid component using regenerative solvents moving counter currently with the fuel derived gas in an absorption column. Desulphurization may also be accomplished using solid sorbents such as metal oxides. This study focused on the enhancement of sulphur removal capacity and regeneration characteristics of solid mesoporous zinc-based sorbents through ultrasound assisted dispersion of active components. The investigation attempted to determine if sonication during wet impregnation of the prepared precursor materials would yield a sorbent with highly dispersed metal oxide content and if the improved dispersion would result in enhanced sorbent capabilities. ZnO/SiO2 sorbents using the wet impregnation technique were prepared using a ZnCl2 precursor solution. The efficacy of the prepared sorbents was tested for hot gas desulphurization using a high temperature flow-through apparatus. A synthetic coal gas was used. Experiments were conducted at temperatures of 350-500ÂșC and space time of 67500 h-1. Breakthrough curves for H2S absorption were constructed from temporal measurements of the H2S concentration in the exit gas stream, using a gas chromatograph equipped with a flame photometric detector. Sonicated sorbents had comparably better desulphurization breakthrough times (on average a 50% increase) than non-sonicated sorbents. It was confirmed that the sorbents prepared via the ultrasonic-assisted impregnation technique had enhanced breakthrough times and saturation capacities.

David Lokhat is the Head of the Reactor Technology Research Group of the School of Engineering at the University of KwaZulu-Natal in Durban, South Africa. His research interests are in catalysis and reactor engineering, specifically process intensification, high temperature processes and applications in fluorochemistry. In 2013, he received the South African Institute of Chemical Engineers Innovation Award for the development of a novel continuous process to produce a fluorochemical intermediate.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version