Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • CiteFactor
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • Centre for Agriculture and Biosciences International (CABI)
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Scholarsteer
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Flyer image
Identification and characterization of a gene controlling tiller trait of wheat
2nd International Conference on Plant Science & Physiology
June 26-27, 2017 Bangkok, Thailand

Rizwana Maqbool, Ragupathi Nagarajan and Kulvinder S Gill

University of Agriculture, Pakistan
Washington state University, USA

Posters & Accepted Abstracts: J Plant Pathol Microbiol

Abstract:

Tiller number is one of the important agronomic traits in cereals such as rice, wheat and barley that directly correlates with yield, but is highly regulated by environmental and endogenous factors. Tillers in wheat are considered to be the axillary branches arising from the crown giving plant shoot architecture. Various genes are known to suppress lateral branching including lateral suppressor (LS) of tomato, MOC1 of rice, and LAS of Arabidopsis. Mutants in these orthologous genes showed suppression of lateral branches. Furthermore, these mutations turned out to be in the conserved GRAS domain. However, the molecular mechanism regulating tillering in wheat has been poorly understood. The main objective of this study is to identify and characterize a gene responsible for number of tillers in wheat. So far, rice MOC1 is the only cloned and characterized gene among cereals controlling tillering. Thus, we selected rice gene as the query sequence to identify its ortholog in wheat. Detailed bioinformatic and sequence analyses identified a gene in wheat showing high sequence similarity with MOC1. All three homoeologous copies of the candidate gene have been cloned and mapped. The gene showed similar expression pattern as that of MOC1 in different developmental tissues. Transient as well as stable silencing of the TaMOC1 resulted in reduced tiller number in wheat suggesting its role in tillering. Microscopic analysis of the silenced plants showed the absence of bud formation in the axial of leaf, directly implicating the role of the gene in tiller bud initiation. The research will focus towards the sustainable agriculture in this era of diminishing available resources.

Biography :

Email: rizwana.maqbool@uaf.edu.pk