alexa Imaging Electrons Motion In Semiconductor Materials | 62964
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

7th Annual Congress on Materials Research and Technology

Michael K L Man
Okinawa Institute of Science and Technology Graduate University, Japan
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022.C1.058
Abstract
Unveiling the fundamental mechanisms in semiconductor devices helps to unlock new paths toward better device performance and design. One of the key processes behind all device structures, is the internal motion of electrons through semiconductor materials due to applied electric fields or excitation of photocarriers. The ability to image the motion of electrons would further our understanding in these charge transfer processes, but requires both high spatial and time resolution. In the study of electron dynamics in materials, ultrafast optical techniques provide excellent temporal resolution, but are limited to spatial resolution. On the other hand, electron microscopy techniques provide very good spatial resolution, but offer poor temporal resolution. Here, by combining femtosecond pump-probe techniques with photoemission electron microscopy, we can track the motion of electrons through space and time, and gain access to the evolution of these electrons in energy and momentum space. In our recent publication, we have imaged the flow of electrons from high to low energy states in a InSe/GaAs semiconductor heterostructure shortly after photoexcitation, which essentially visualized the fundamental operating phenomena of solar cell devices. At the instant of photoexcitation, our measurement revealed the highly non-equilibrium distribution of photoexcited carriers in energy and space. Thereafter, in response to the out-ofequilibrium photocarriers, we observed the spatial redistribution of charges, which results in the formation of an internal electric fields that impede and finally stop the flow of electrons. By stitching together images taken at different time-delays, we created a movie lasting a few trillionths of a second of the electron transfer process in the photoexcited semiconductor heterostructure. Quantitative analysis and theoretical modeling of spatial variations in the video provide insight into operation of solar cells, the physics of 2D van der Waals materials, and other optoelectronic devices in general.
Biography

Michael K L Man studied in the Hong Kong University of Science and Technology and obtained his PhD degrees in Nano Science and Technology in 2011. Since 2012, he joined the Femtosecond Spectroscopy Unit in the Okinawa Institute of Science and Technology Graduate University as a postdoc and work on combining ultrafast optics techniques with electron microscopy in the study of time and spatially resolved electron dynamics. His research is in the area of surface physics using the low energy electron microscopy and photoemission electron microscopy techniques and a variety of other surface analytical tools. His research interests are in electron dynamics and transport, surface growth and diffusion, phase transition, magnetic and quantum electronic properties in 2D materials and ultrathin films.

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7