alexa Interbed Modeling To Predict Wellbore Damage For Big Hill Strategic Petroleum Reserve
ISSN:2157-7463

Journal of Petroleum & Environmental Biotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

2nd World Congress on Petrochemistry and Chemical Engineering
October 27-29, 2014 Embassy Suites Las Vegas, USA

Byoung Yoon Park
ScientificTracks Abstracts: J Pet Environ Biotechnol
DOI: 10.4172/2157-7463.S1.006
Abstract
Oil leaks were found in wellbores of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interbed between the caprock bottom and salt top. A three dimensional finite element model, which allows each cavern to be configured individually, was constructed to investigate horizontal and vertical displacements in each well as it crosses the various interbeds. The model contains interfaces between each lithology and a shear zone (fault) to examine the interbed behavior in a realistic manner. This analysis results indicate that the casings of Caverns 105 and 109 failed, respectively,from shear stress that exceeded the casing shear strength due to the horizontal movement of the salt top relative to the caprock and tensile stress due to the downward movement of the salt top from the caprock. The wellbores of Caverns 114 and 104, located at the far end of the field and near the fault, respectively, are predicted to fail by shear stress in the near future. The wellbores of inmostCaverns 107 and 108 are predicted to fail by tensile stress in the near future. The salt top subsides because the volumes of caverns in the salt dome decrease with time due to salt creep closure, while the caprock does not subside at the same rate as the salt top because the caprock is thick and stiff. This discrepancy yields deformation of well.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords