alexa Interfaces Between Transferred, CVD-grown Graphene And MoS2 Probed With STM And ARPES
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

3rd International Conference and Exhibition on Materials Science & Engineering
October 06-08, 2014 Hilton San Antonio Airport, USA

Matthias Batzill, Horacio Coy Diaz, Jose Avila and Maria Carmen Asensio
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022.S1.014
Heterostructures made of different van der Waals materials are of increasing interest because of potential applications in energy harvesting and combination of spin- and valley-tronics. However, the interface properties of these materials are not yet well characterized. One challenge for their characterization is the preparation of large-area high quality materials that enable employment of surface characterization techniques such as scanning probe microscopy and photoemission spectroscopy. Here we demonstrate the transfer of CVD-grown graphene to bulk MoS2 substrates and report the first STM and ARPES studies of such a system. As expected for weakly interacting materials STM studies only exhibit a very weak moire-superstructure and (nano) ARPES measurements show that the Dirac cone of graphene is maintained. However, (nano) ARPES also shows the formation of band-gaps in the pi-band of graphene where the out-of-plane molecular orbitals of MoS2 intersect with the electronic-states of graphene. This modification of the electronic structure of graphene in the graphene/MoS2heterostructure is contrary to expectations of simple van-der Waals stacked materials. The high quality of the samples will enable further studies of the spin state of the graphene and MoS2 substrate as well as enable preparation of other heterostructure materials and thus will give a detailed description of the interaction in these heterostructure systems.
image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version