Reach Us +441414719275
Is It Possible To Increase The Osteoblastic Activity By Using PLGA Composites That Are Produced By Calcium Phosphate Dibasic? | 9591
ISSN: 2157-7552

Journal of Tissue Science & Engineering
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

2nd International Conference on Tissue Science & Regenerative Medicine

Nevzat Selim Gokay, Alper Gokce, Ibrahim Yilmaz, Sergulen Dervisoglu and Nese Bilgin
ScientificTracks Abstracts: J Tissue Sci Eng
DOI: 10.4172/2157-7552.S1.010
B iodegradable implants may be an option in the treatment of fractures. It was hypothesized that the optimal degradable implant should help the bone healing process. In this study, the effects of poly lactide-co-glycolide acid (PLGA;85:15) based implant system whose biodegradation time was elongated by using calcium phosphate dibasic, on osteoblastic activity was evaluated. The preferred biodegradable PLGA composite was scanned under electron microscopy for surface characterizations and porosity. A prototype of plate and screws were molded from this PLGA composites containing calcium phosphate dibasic. The osseous cells (n=6) were cultured according to the standard primary human cell culture protocol. The osteoblastic activity of the cells were determined with flow cytometer by immune phenotyping. After a period of 6 weeks with multiple cells passaging, cells were collected and seeded on the previously formed PLGA containing well plates. For 21 days, the osteoblasts of each patient were followed under inverted microscope. The viability of these cells were evaluated by MTS-Enzyme Linked Immunosorbent Assay. Histopathological evaluation was also performed. Another commonly used PLGA based plate system, without additives were taken as control group. MTS cell proliferation results were analyzed statistically using analysis of variance (ANOVA) and F test. The novel designed polymeric biodegradable plate-screw implant system was not toxic to the primary osteoblast cultures. Cells were nested perfectly into this implant system and this was proved by determination of cell proliferation and differentiation using fluorescein-iso-thio-cynate (FITC) - phyco-erythrin (PE), conjugated monoclonal antibodies [negative expression; HLA- DR (% 7,54?0,0263), CD10 (% 4,67?0,0155), CD14 (%7,73?0,0232 ), CD34 (%8,41?0,0266), CD11b (%8,67?0,0235), CD117 (%5,48?0,0248) and, CD45 (%20,47?0,04818)/ positive expression; CD44 (%94,58?0,0270)] and isotype controls. The bio- degradation period was approximately 8.5 months. According SEM analysis, the high porosity of the inner areas of the designed plates were remarkable. After drying, cracking occurred on the surface of the plague and osteoblasts showed a homogenous distribution on the plate system. Better cell nesting forms were observed. We suggest that the novel designed biocompatible polymeric plate-screw implant system can safely be used in fracture fixation.
Nevzat Selim Gokay has completed his M.D. degree at the age of 24 years from Istanbul University Cerrahpasa School of Medicine. He has gained the title of Consultant Orthopaedic Surgeon at 2005 from Istanbul University Cerrahpasa School of Medicine. He has been working as an Assistant Professor in Namik Kemal University Department of Orthopaedics and Traumatology since 2008.
image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7