alexa L10-FePt Based Systems For Ultra High-density Magnetic Recording
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

9th World Congress on Materials Science and Engineering
June 12-14, 2017 Rome, Italy

Gaspare Varvaro
ISM-CNR, Italy
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-067
Abstract
The demand for digital storage devices is continuously growing in response to the extraordinary increase of the volume of data created worldwide, which would reach the value of 40 zettabytes in 2020. Among the different storage devices currently available, the hard disk drive (HDD), based on the magnetic recording technology, remains the most convenient (cost/GB 0.02 $) and diffusive devise (~400 millions of units sold in 2016) for massive digital data storage. Currently available HDDs using CoCrPt:SiO2 granular thin films with perpendicular magnetic anisotropy are reaching their physical limit (~1 Tbit/in2 recording density) due to thermal fluctuations that hinder a further reduction of in-plane grain size (to 4–5 nm) needed to scale down the bit size. L10-FePtX alloy is currently considered the most promising candidate for future recording media with areal densities above 1 Tbit/in2 thanks to its high magneto-crystalline anisotropy, which enables it to be thermally stable even at grain sizes down to 3 nm. However, its huge anisotropy implies an increase of the switching field, which cannot be afforded by current available write heads. The writability and thermal stability requirements can be simultaneously addressed by using exchange coupled composite systems, combining two or multiphase magnetic hard and soft materials, where the hard phase provides thermal stability and the soft phase reduces the switching field. An alternative approach involves the use of so-called bit patterned media, which consist of an ordered two-dimensional array of individual magnetic nanostructures with perpendicular anisotropy, each of them representing one bit of information, obtained by nanolithography and/or self-assembly techniques. This communication reports on the fabrication and physical properties of FePtXbased thin films and nanoparticles of potential interest for next generation recording media based on exchange coupled composite materials and bit patterned magnetic recording technology.
Biography

Gaspare Varvaro has done his PhD in Material Science 2007, University “La Sapienza” of Roma, Italy. He works as a CNR Researcher since 2010. He is a member of the Nanostructured Magnetic Material Lab (ISM – CNR) and Head of the Thin Film Deposition Lab since 2015. His interests span from the fabrication to the characterization of magnetic and magneto-transport properties and their correlation with morpho-structural properties of nanostructured magnetic materials including single-phase, magnetic composites and hybrid/multifunctional systems (thin films, multilayers, nanoparticles and nano-patterned systems) for fundamental studies and applications (information storage, energy, sensors and biomedicine). His research activity is witnessed by more than 40 papers on ISI journals and conference proceedings and 2 book chapters. He is co-editor of a book titled “Ultra-High-Density Magnetic Recording: Storage Materials and Media Designs”.

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords