alexa Layer By Layer Assembly Of Graphene And Ultrathin Vanadium Pentoxidecoated MWCNTs On Textile Fabrics For High Flexible Supercapacitor Electrodes
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

4th International Conference on Nanotek & Expo
December 01-03, 2014 DoubleTree by Hilton Hotel San Francisco Airport, USA

Imran Shakir, Usman Ali Rana and Dae Joon Kang
ScientificTracks Abstracts: J Nanomed Nanotechnol
DOI: 10.4172/2157-7439.S1.017
Among transition metal oxides, vanadium oxides have received relatively modest attention for supercapacitor applications. Yet, this material is abundant, relatively inexpensive and offers several oxidation states which can provide a broad range of redox reactions suitable for supercapacitor operation. Electrochemical supercapacitors based on nanostructured vanadium oxide (V2O5 ) suffer from relatively low energy densities as they have low surface area and poor electrical conductivities. To overcome these problems, we developed a layer by layer assembly (LBL) technique in which a graphene layer was alternatively inserted between MWCNT films coated with ultrathin (3 nm) V2O5 . The insertion of a conductive spacer of graphene between the MWCNT films coated with V2O5 not only prevents agglomeration between the MWCNT films but also substantially enhances the specific capacitance by 67 %, to as high as ~2,590 Fg-1. Furthermore, the LBL assembled multilayer supercapacitor electrodes exhibited excellent cycling performance > 97 % capacitance retention over 5,000 cycles and a high energy density of 96 Whkg-1 at a power density of 800 Wkg-1. Our approach clearly offers an exciting opportunity for enhancing the device performance of metal oxide-based electrochemical supercapacitors suitable for next-generation flexible energy storage devices by employing a facile LBL assembly.
Imran Shakir is currently employed in the capacity of Assistant Professor at Sustainable Energy Technologies (SET) center, KSU. He is completed his PhD and postdoc from South Korea. He has worked with Samsung, Electronics, Korea for more than three years for the development of functional nanomaterials for efficient energy storage and devices. In this regard he has several scientific and technological breakthroughs in this field and published more than 60 international publications. While doing PhD and afterwards, he has published his work in the area of energy storage and conversion devices in a number of high impact Journals (Nanoscale, ChemComm, J Mat Chem, J Power Sources, RSC Advances , Elctrochimica Acta etc. His current research is mainly focus on the development of high capacitance, high-energy density energy storage devices and also to provide a fundamental understanding of the microscopic underlying mechanisms in the ionic transport properties and the change in the electronic structure of state-of-the-art nanostructures.
image PDF   |   image HTML
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version